1) Пусть х - ширина вольера. Тогда х + 0,6 - длина вольера. Уравнение: х(х + 0,6) = 2,47 х² + 0,6х - 2,47 = 0 D = √(0,6² -4(-2,47)) = √(0,36 + 9,88) = = √10,24 = 3.2 х1 = (-0,6 + 3,2)/2 = 1,3 м - ширина вольера. х2 = (-0,6 - 3,2)/2 = -1,9 - не подходит, поскольку ширина не может иметь отрицательное значение.
2) х + 0,6 = 1,3 + 0,6 = 1,9 м - длина вольера.
3) Р = 2(1,9 + 1,3) = 6,4 м сетки уйдёт на вольер, если он буде обнесен сеткой по всему периметру ( со всех сторон. Или р = 1,9 + 1,3 = 3,2 м сетки уйдет на вольер, если в качестве двух стенок будет использоваться угол комнаты.
1) До удаления серединного верхнего параллелепипеда это был параллелепипед с такими размерами: 11 см (длина)
3 см (ширина)
4 см (высота)
Находим его объём:
V₁ = 11 см · 3 см · 4 см = 132 см³
2) Вырезанный серединный верхний параллелепипед имеет размеры:
11 см - 4 см - 4 см = 3 см (длина)
3 см (ширина)
2 см (высота
Находим его объём:
V₂ = 3 см · 3 см · 2 см = 18 см³
3) А теперь находим V объём данного тела:
V =V₁ - V₂
V = 132 см³ - 18 см³ = 114 см³
ответ: 114 см³