S = a · b = 90 м² - площадь площадки
Пусть а = х м - ширина, тогда b = (х + 1) м - длина. Уравнение:
х · (х + 1) = 90
х² + х = 90
х² + х - 90 = 0
D = b² - 4ac = 1² - 4 · 1 · (-90) = 1 + 360 = 361
√D = √361 = 19
х₁ = (-1-19)/(2·1) = (-20)/2 = -10 (не подходит, так как < 0)
х₂ = (-1+19)/(2·1) = 18/2 = 9 м - ширина (а)
9 + 1 = 10 м - длина (b)
P = (a + b) · 2 = (9 + 10) · 2 = 19 · 2 = 38 м - периметр площадки
38 : 10 = 3,8 ≈ 4 (округляем до целого) = 4 упаковки материала
ответ: 9 м - меньшая сторона; 10 м - большая сторона; 4 упаковки.
Пошаговое объяснение:
При решении задач на нахождение двух чисел по их сумме и разности схематические рисунки. Рассмотрим задачу. В одной корзине на восемь яблок больше, чем во второй. В двух корзинах вместе двадцать яблок. Сколько яблок в каждой корзине? Решение: выполним схематический рисунок. Покажем две корзины, в первой – на восемь яблок больше. Общее количество яблок двадцать. ... ответ: 988 см2. Опираясь на данные задачи, мы можем составить примерную схему решения задач на нахождение двух чисел по их сумме и разности: составляем схему по условию задачи; вычитаем из общей суммы лишнее (уравниваем количество); делим это количество поровну; отвечаем на вопрос задачи