Пусть все 290 слагаемых равны по 2. Тогда их сумма равна 290·2=580, что меньше 2020. Значит, среди слагаемых есть число, большее 2.
Пусть каждое из 290 слагаемых равно по 2 или по 3. Тогда максимальная сумма, даваемая с таких слагаемых равна 290·3=870, что меньше 2020. Значит, среди слагаемых есть число, большее 3.
Пусть каждое из 290 слагаемых равно по 2, по 3 или по 5. Тогда максимальная сумма, даваемая с таких слагаемых равна 290·5=1450, что меньше 2020. Значит, среди слагаемых есть число, большее 5.
Пусть каждое из 290 слагаемых равно по 2, по 3, по 5 или по 7. Тогда максимальная сумма, даваемая с таких слагаемых равна 290·7=2030. Это больше, чем 2020, значит такой вариант можно рассматривать далее.
Максимальная сумма получается при суммировании 290 чисел, каждое из которых равно по 7. Как видно, максимальная сумма больше требуемой на 10. Тогда, можно уменьшить некоторые слагаемые в этой сумме. Например, уменьшить 2 слагаемых на 5. Получим сумму вида:
Десятичные дроби впервые были употреблены замечательным узбекским ученым ал-Каши. В начале ХV в. в Средней Азии вблизи города Самарканд была создана большая обсерватория. В ней производились наблюдения за движением звезд, планет и Солнца, вычислялись дни праздников и т. д. В обсерватории работали лучшие ученые того времени. Руководил обсерваторией ученый Джемшид ибн-Масуд ал-Каши, иногда называемый Гиясседдином ал-Каши, который был высокообразованным математиком и астрономом. Он оставил после себя много замечательных математических открытий. В 1427 г. ал-Каши закончил книгу “Ключ к арифметике” . В этой книге он впервые в мире употребил десятичные дроби, дал правила действия с ними, пояснил эти правила на примерах, подробно описал новую, открытую им систему записи дробей. Для обозначения разрядов он использовал разные варианты: отделял их вертикальной чертой, писал разными чернилами, иногда выписывал название разряда полностью словами. Потребность в упрощении записи и действий с дробями была большая. Европейские ученые искали и, на конец, нашли новый вид дробей, более простой и более удобный, В Европе впервые подробно описал десятичные дроби талантливый фламандский инженер и ученый Стевин (1548-1620). В книге “О десятой” изданной в 1585 г. , Стевин подробно описал правила действий и преимущества открытых им десятичных дробей. Стевин не был знаком с трудами ал-Каши и действительно открыл десятичные дроби. Но он открыл открытое. Первенство принадлежит Джемшиду ал-Каши, опередившему Стевина на полтора века. Теперь относительно запятой в десятичных дробях. Ставить запятую после целой части десятичной дроби предложил знаменитый немецкий ученый Кеплер (1571 1630). до Кеплера после целой части ставили нуль в скобках, напри мер, 3,7 писали как 3(0)7, отделяли вертикальной чертой 3 7 или писали разными чернилами, напри мер, целую часть числа - черными, а дробную - красными. Вот что нашла
Пусть все 290 слагаемых равны по 2. Тогда их сумма равна 290·2=580, что меньше 2020. Значит, среди слагаемых есть число, большее 2.
Пусть каждое из 290 слагаемых равно по 2 или по 3. Тогда максимальная сумма, даваемая с таких слагаемых равна 290·3=870, что меньше 2020. Значит, среди слагаемых есть число, большее 3.
Пусть каждое из 290 слагаемых равно по 2, по 3 или по 5. Тогда максимальная сумма, даваемая с таких слагаемых равна 290·5=1450, что меньше 2020. Значит, среди слагаемых есть число, большее 5.
Пусть каждое из 290 слагаемых равно по 2, по 3, по 5 или по 7. Тогда максимальная сумма, даваемая с таких слагаемых равна 290·7=2030. Это больше, чем 2020, значит такой вариант можно рассматривать далее.
Максимальная сумма получается при суммировании 290 чисел, каждое из которых равно по 7. Как видно, максимальная сумма больше требуемой на 10. Тогда, можно уменьшить некоторые слагаемые в этой сумме. Например, уменьшить 2 слагаемых на 5. Получим сумму вида:
Наибольшим слагаемым является число 7.
ответ: 7