Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
Пошаговое объяснение:А3 РОВНО А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел
ответ: 69
Пошаговое объяснение:Если среди 85 найдутся деревья 4 вида деревьев - то есть каждого дерева минимум по 16 экземпляров, иначе исключим эти деревья - и получится 85 деревьев 3-х видов.
Это верно.
Теперь отнимем из 85 16 - получится 69, это и есть минимальное количество, среди которого найдётся деревья 3-х видов.
1) Необходимость. Докажем, что меньше нельзя. Например, 68 деревьев. Очевидно, что распределение 34-34-16-16 удовлетворяет исходному условию (среди 85 есть все 4 вида), а взяв первые два вида, получим 68 деревьев. То есть, 68 не является достаточным набором.
2) Достаточность. Предположим, что мы взяли 69 деревьев и они оказались только двух видов. Из оставшихся 31 деревьев деревья оставшихся двух видов(например, 3-й вид и 4-й), хотя бы один встречается в количестве меньшем, либо равном 15 (если оба встречаются 16 и более раз, то получается оставшихся деревьев не менее 32). Возьмём вид, встречающийся в количестве меньшем, чем 15 раз - например, это вид 4. Теперь соберём все деревья, кроме 4-го вида - их будет 100 минус вид 4, то есть не менее 85, что противоречит условию задачи.
Итого - 69 - необходимое и достаточное число.