АВС - данный прям. тр-ик. Угол С - прямой, АС= 15, ВС = 20. Восстановим перпендикуляр СО из точки С к плоскости АВС. СО = 16. Проведем ОК перп. АВ, тогда СК тоже перп. АВ (по т. о 3-х перпенд).
Найдем сначала гипотенузу АВ:
АВ = кор( 225 + 400) = 25.
Теперь по известной формуле(h=ab/c) найдем высоту СК, опущенную на гипотенузу:
СК = 15*20/25 = 12.
Теперь из прям. тр-ка ОКС найдем искомое расстояние ОК от конца О перпендикуляра СО до гипотенузы АВ:
ОК = кор(ОСкв + СКкв) = кор(256 + 144) = 20.
ответ: 20 см.
Примечание: Расстояние СК до другого конца перпендикуляра равно 12 см. Просто в условии непонятно - найти одно, или два расстояния.
Обозначим искомые числа через х и у. Согласно условию задачи, сумма двух данных чисел на 4 больше первого числа, следовательно, имеет место следующее соотношение: х + у = 4 + х. Упрощая полученное соотношение, получаем: х - х + у = 4; у = 4. Также известно, что сумма двух данных чисел на 6 больше второго числа, , следовательно, имеет место следующее соотношение: х + у = 6 + у. Упрощая полученное соотношение, получаем: х + у - у = 6; у = 6. Находим сумму двух данных чисел: х + у = 4 + 6 = 10. ответ: искомые числа 4 и 6, их сумма равна 10.
Пошаговое объяснение:
АВС - данный прям. тр-ик. Угол С - прямой, АС= 15, ВС = 20. Восстановим перпендикуляр СО из точки С к плоскости АВС. СО = 16. Проведем ОК перп. АВ, тогда СК тоже перп. АВ (по т. о 3-х перпенд).
Найдем сначала гипотенузу АВ:
АВ = кор( 225 + 400) = 25.
Теперь по известной формуле(h=ab/c) найдем высоту СК, опущенную на гипотенузу:
СК = 15*20/25 = 12.
Теперь из прям. тр-ка ОКС найдем искомое расстояние ОК от конца О перпендикуляра СО до гипотенузы АВ:
ОК = кор(ОСкв + СКкв) = кор(256 + 144) = 20.
ответ: 20 см.
Примечание: Расстояние СК до другого конца перпендикуляра равно 12 см. Просто в условии непонятно - найти одно, или два расстояния.