Общее количество учеников во всех трёх классах равно 28+24+20 = 72. Так как 72 делится на 3, то равенство количества учеников во всех трёх классах возможно - в каждом классе будет по 72/3 = 24 ученика.
Из условия задачи не ясно, сколько переводов из класса в класс допускается - один или два (три перевода и более могут быть заменены эквивалентными одним или двумя), поэтому вторую часть задачи решим исходя из более жёсткого ограничения (один перевод):
Задача имеет решение, например, для троек:
21, 25, 29
21, 26, 31
19, 22, 25
20, 21, 22
и много других.
Третью часть задачи решим исходя из более мягкого ограничения (два перехода):
Задача не имеет решения, например, для троек:
21, 22, 24
22, 25, 27
23, 25, 28
и так далее (во всех указанных случаях общее число учеников не делится на 3).
Указанные ответы во второй и третьей части универсальны - годятся как для жёсткого, так и для мягкого ограничения (при сдаче решения про эти ограничения лучше вообще не упоминать, они даны только для разъяснения)
a = 2² · 3 · 7 = 84
b = 2 · 3² · 7² = 882
НОД (a; b) = 2 · 3 · 7 = 42 - наибольший общий делитель
84 : 42 = 2 882 : 42 = 21
НОК (a; b) = 2² · 3² · 7² = 1764 - наименьшее общее кратное
1764 : 84 = 21 1764 : 882 = 2
Вiдповiдь: НСД = 42; НСК = 1764.