М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Айкотик2017
Айкотик2017
08.07.2020 13:09 •  Математика

Как думаете, у парня большой ч*ен? Мне кажется, да…


Как думаете, у парня большой ч*ен? Мне кажется, да…

👇
Открыть все ответы
Ответ:
danisdigger
danisdigger
08.07.2020
Тметим на координатной прямой точки с координатами -3 и 2. если точка расположена между ними, то ей соответствует число, которое больше -3 и меньше 2. верно и обратное: если число х удовлетворяет условию -3< x< 2 , то оно изображается точкой, лежащей между точками с координатами -3 и 2. множество всех чисел, удовлетворяющих условию -3< x< 2, называется числовым промежутком или просто промежутком от -3 до 2 и обозначается так: (-3; 2). на рисунках изображены множество чисел х, для которых выполняется неравенство х< 10 и х≤10. эти множества представляют собой промежутки, обозначаемые соответственно (-∞; 10) и (-∞; 10]. читается так: число х принадлежит промежутку от минус бесконечности (-∞) до 10 (х< 10) и число х принадлежит промежутку от минус бесконечности (-∞) до 10, включая число 10 (х≤10). знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. промежуток [3; 5] является пересечением промежутков [-1; 5] и [3; 7]. это можно записать так: [-1; 5]∩[3; 7]=[3; 5].промежутки [0; 4] и [6; 10] не имеют общих элементов. если множество не имеет общих элементов, то говорят, что их пересечение пусто. значит, пересечение промежутков [0; 4]∩[6; 10]=0. объединение числовых промежутков каждое число из промежутка [1; 7] принадлежит хотя бы одному из промежутков [1; 5] и [3; 7], то есть, либо промежутку [1; 5], либо промежутку [3; 7], либо им обоим. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают . промежуток [1; 7] является объединением промежутков [1; 5] и [3; 7]. это можно записать так:  заметим, что объединение промежутков не всегда представляет собой промежуток, например множество не является промежутком. 1. числовым промежутком называется множество всех чисел, удовлетворяющих неравенству.2. знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка.3. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. 4. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают .
4,5(81 оценок)
Ответ:
ксюша1704
ксюша1704
08.07.2020
Все отношения между числами симметричные, т.е. если взаимно поменять местами, скажем, a и b , то ничего не изменится, всё будет работать как прежде.

Значит, мы можем переставить все числа, так,
чтобы оказалось, что c b a 1 .

Введём новые переменные \{ x , y , k , m , n \} \in N .

И будем искать такие комбинации a, a+x, a+x+y , чтобы

( [ a + 1 ] + x + y ) | ( 2a+x ) ,
( [ a + 1 ] + x ) | ( 2a+x+y ) и
( a + 1 ) | ( 2a+2x+y ) .

Начнём с первого требования, оно эквивалентно утверждению, что:

k ( [ a + 1 ] + x + y ) = 2a + x ;

(k-1) x + ky = 2a - k [ a + 1 ] ;

При k 1 , правая часть отрицательная, а левая положительна, что не возможно.

Значит, k = 1 \ ; \ \Rightarrow y = a - 1 ;

Теперь подставим вместо y его значение y = a - 1 и будем искать такие комбинации a, a+x, 2a+x-1 , чтобы:

( 2a + x ) | ( 2a+x ) – теперь всегда будет выполняться с k = 1 ,
( [ a + 1 ] + x ) | ( 3a+x-1 ) и
( a + 1 ) | ( 3a+x-1 ) .

Проанализируем второе требование, оно эквивалентно утверждению, что:

m ( [ a + 1 ] + x ) = 3a+x-1 ;

(m-1) x = 3a - 1 - m [ a + 1 ] ;

При m 2 , правая часть отрицательная, а левая положительна, что не возможно.

При m = 1 \ ; \ \Rightarrow 0 = 2a - 2 \ ; \ \Rightarrow a = 1 , но это не подходит по условию.

Значит, m = 2 \ ; \ \Rightarrow x = a - 3 ;

Теперь подставим вместо x его значение x = a - 3 и будем искать такие комбинации a, 2a-3, 3a-4 , чтобы:

( 3 [ a - 1 ] ) | ( 3 [ a - 1 ] ) – теперь всегда будет выполняться с k = 1 ,
( 2 [ a - 1 ] ) | ( 4 [ a - 1 ] ) – теперь всегда будет выполняться с m = 2 ,
( a + 1 ) | ( 5a-7 ) .

Проанализируем последнее требование, оно эквивалентно утверждению, что:

n ( a + 1 ) = 5a - 7 ;

na + n = 5a - 7 ;

5a - na = 7 + n ;

( 5 - n ) a = 7 + n ;

a = \frac{ 7 + n }{ 5 - n } = \frac{ 12 + n - 5 }{ 5 - n } = \frac{ 12 }{ 5 - n } - \frac{ 5 - n }{ 5 - n } = \frac{ 12 }{ 5 - n } - 1 ;

Сумма всей комбинации – это:

S = a + (2a-3) + (3a-4) = 6a-7 = 6(a-1)-1 = 6( \frac{ 12 }{ 5 - n } - 2 ) - 1 ,

максимум которой достигается при минимальном значении

в знаменателе дроби \frac{ 12 }{ 5 - n } , т.е. при n = 4 .

Тогда сумма всей комбинации S = 6( \frac{ 12 }{ 5 - n } - 2 ) - 1 = 6( \frac{ 12 }{ 5 - 4 } - 2 ) - 1 =

= 6( \frac{ 12 }{ 1 } - 2 ) - 1 = 6( 12 - 2 ) - 1 = 6 \cdot 10 - 1 = 60 - 1 = 59 ;

О т в в е т : 59 .
4,4(69 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ