Пусть функция определена на множестве E Пусть где . Понятно, что для любого на области от (то есть: ) выполняется . Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется (Проще говоря: ). Следовательно - . Что и требовалось доказать. Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на ! Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "... Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание. А то получается: спрашивают об области, а проверяют точку. Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
Поскольку в задаче не говорится, какой игрок находится ближе к финишу, то будет 2 варианта решения задачи: 1 вариант Игрок с большей скоростью движется впереди. 1) 90-80=10 м/мин скорость отдаления 2) 10*2=20 метров увеличится расстояние 3) 200+20=220 метров ответ расстояние между игроками через 2 минуты будет 220 метров
2 вариант Игрок с меньшей скоростью был впереди. 1) 90-80=10 м/мин скорость сближения 2) 10*2=20 метров сблизятся 3) 200-20=180 метров ответ через 2 минуты расстояние между ними будет 180 м
Пусть
Понятно, что для любого
Следовательно, для
Получили, что для любого
(Проще говоря:
Что и требовалось доказать.
Для
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве
Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на
Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание.
А то получается: спрашивают об области, а проверяют точку.
Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)