ответ:Тогда площадь равна S= \frac{1}{2}a*H= \frac{1}{2} a*b*sinC= \frac{1}{2}*20*14* \frac{3}{5}=84 кв.ед.
Пошаговое объяснение:
Находим длину третьей стороны по теореме косинусов:
Затем по формуле Герона находим площадь треугольника:
.
Подставив значения сторон и найденное значение полупериметра
р = 23.082763. находим площадь треугольника:
a b c p 2p S
20 14 12.165525 23.082763 46.16552506 84
cos A = -0.164399 cos B = 0.7233555 cos С = 0.8
Аrad = 1.735945 Brad = 0.7621465 Сrad = 0.643501109
Аgr = 99.462322 Bgr = 43.66778 Сgr = 36.86989765.
Можно решить задание более простым
Находим значение синуса заданного угла:
Находим значение синуса заданного угла:
sinC= \sqrt{1-cos^2C} = \sqrt{1- \frac{16}{25} } = \sqrt{ \frac{9}{25} } = \frac{3}{5} .
Подробнее - на -
a) [c] [a, b, c, d, e, f, g, k].
Пошаговое объяснение:
a) (A ∩ B) ∩ C. Согласно правил выполнения операций над множествами, сначала выполним операцию пересечения множеств А и В, которая заключена в скобки. Анализ элементов множеств показывает, что элементы c и d являются общими для множеств А и В. Следовательно, A ∩ B = {c, d}. Теперь найдём пересечение найденного множества и множества С. Для них общим элементом является лишь один элемент c. Итак, (A ∩ B) ∩ C = {c}.
b) (A U B) U C. Согласно правил выполнения операций над множествами, сначала выполним операцию объединения множеств А и В, которая заключена в скобки. Анализ элементов множеств показывает, что элементы c и d являются общими для множеств А и В; их включаем в объединение только один раз. Следовательно, A U B = {a, b, c, d, e, f}. Теперь найдём объединение найденного множества и множества С. Имеем (A U B) U C = {a, b, c, d, e, f, g, k }.
ответ: а) {c}; {a, b, c, d, e, f, g, k }.