Відповідь:
НСД (10; 25) = 5,
НСД (18; 24) = 6,
НСД (7; 12) = 1.
НСД(28; 42) = 14.
НСД (250; 3000) = 250.
НСД (132; 180; 144) = 12.
У розглянутому прикладі ми легко знайшли найбільший спільний дільник чисел, записавши всі дільники кожного з них. Якщо числа великі й мають багато дільників, то знаходження найбільшого спільного дільника цим доволі громіздким.
Розглянемо ще один б знаходження найбільшого спільного дільника, взявши числа 210 і 294. Розкладемо кожне із цих чисел на прості множник
210 = 2 · 3 · 5 · 7; 294 = 2 · 3 · 7 · 7.
Підкреслимо всі спільні прості множники в розкладах даних чисел: 2, 3, 7.
Числа 210 і 294 діляться на кожне із чисел 2, 3, 7 і на їх добуток: 2 · 3 · 7 = 42.
Число 42 є найбільшим спільним дільником чисел 210 і 294:
НСД(210; 294) = 42.
Покрокове пояснення:
Взагалі, якщо число а — дільник числа b, то НСД (а; b) = а.
Введем понятие графа:
Граф - конечное множество точек, соединенных между собой. Точки зовутся вершинами графа, а соединения - ребрами.
Вершина зовется нечетной (степени), если из нее выходит нечетное количество ребер
Докажем, что в графе нечетное количество всегда четно.
Пусть а1, а2, а3, ... , аn - степени четных вершин
b1, b2, b3, ... , bk - степени нечетных
Сумма а-тых=Sa
Сумма b-тых=Sb
Т. к. Ребро имеет два конца => сумма степеней всех графа делится на 2
Тогда (Sa+Sb) делится на 2
Sa делается на 2, т.к все степени четны
=> Sb тоже делится на 2
Sb: каждая степень нечетна => что бы Sb делилось на 2, то и число вершин должно быть четно
Что и требовалось доказать
1) через доказанное утверждение получаем, что 37 по 3 - нечетное количество нечетных вершин => такого не могло быть
И так далее...