1. б) (-3; 8]
2. а)
3. x∈ [-1; 2)
4. x∈ (-3; +∞)
5. x∈ (-1,5; 6]
6. x∈ [1/5; 2]
7. x∈ (-∞; 12]
8. x∈ [-2; 3]
Пошаговое объяснение:
1. Из граничных точек точка -3 отмечена окружностью, поэтому не принадлежит ко множеству, точка 8 отмечен кругом, поэтому принадлежит ко множеству. Если граничное значение не принадлежит ко множеству, то в числовом интервале используется круглая скобка, а если граничное значение принадлежит ко множеству, то в числовом интервале используется квадратная скобка. Поэтому б) (-3; 8]
2. Дано х ≤ -5, что означает все точки множества меньше либо равно -5 (то есть лежат слева от -5) и множество снизу не ограничено. Поэтому ответ а) подходит.
3.
Тогда имеет место двойное неравенство: -1≤ х < 2. ответ: [-1; 2)
4.
Отсюда x>-3 или x∈ (-3; +∞)
5. -6 ≤ 6-2x < 9
-6-6 ≤ -2x < 9-6
-12 ≤ -2x < 3
-12:(-2) ≥ x > 3:(-2)
-1,5 < x ≤ 6 или x∈ (-1,5; 6]
6. При каких значениях переменной имеет смысл выражение
Данное выражение имеет смысл, если подкоренные выражения не отрицательные:
1/5 ≤ x ≤ 2 или x∈ [1/5; 2]
7. Решите совокупность неравенств
Отсюда х ≤ 12 или x∈ (-∞; 12]
8.
Отсюда -2 ≤ х ≤ 3 или x∈ [-2; 3]
ответ:
-21
пошаговое объяснение:
пусть x_0x
0
— абсцисса точки на графике функции y=-12x^2+bx-10,y=−12x
2
+bx−10, через которую проходит касательная к этому графику.
значение производной в точке x_0x
0
равно угловому коэффициенту касательной, то есть y'(x_0)=-24x_0+b=3.y
′
(x
0
)=−24x
0
+b=3. с другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2.−12x
0
2
+bx
0
−10=3x
0
+2. получаем систему уравнений \begin{cases} -24x_0+b=-12x_0^2+bx_0-10=3x_0+2. \end{cases}{
−24x
0
+b=3,
−12x
0
2
+bx
0
−10=3x
0
+2.
решая эту систему, получим x_0^2=1,x
0
2
=1, значит либо x_0=-1,x
0
=−1, либо x_0=1.x
0
=1. согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1,x
0
=−1, тогда b=3+24x_0=-21.b=3+24x
0
=−21.
ответ
-21
S=12+8=20кв м
S=12+12=24кв м
Не маломата ли площадь комнат???