2¹/ˣ⁻¹<2¹/²ˣ⁻¹+1; 2⁻¹=1/2, умножим обе части неравенства на 2
2¹/ˣ-2¹/²ˣ-2<0
Пусть у=2¹/²ˣ, где у >0. тогда у²-у-2<0, По теореме, обратной теореме Виета, корни левой части уравнения у₁=-2; у₂=1, и
(y-2)(y+1)<0; решив это неравенство методом интервалов, разбив на интервалы числовую ось (∞;-1 );(-1;2);(2;+∞) установим знаки на этих интервалах, имеем у∈(-1;2), да еще учитав, что у>0, получим 0<2¹/ˣ<2 так как основание два больше единицы, то 1/(2х)<2
(1-2х)/2х<0, опять обратимся к методу интервалов, разобьем числовую ось на интервалы (-∞;0); (0;0.5);(0.5;+∞) установим, что левая часть отрицательна при
х∈(-∞; 0)∪ (0.5;+∞)
Пошаговое объяснение:
Буратино может разделить свои монеты на три кучки по 7, 4, 4, или по 5, 5, 5, или по 3, 6, 6, или по 1, 7, 7 монет. При первом взвешивании он положит на весы две кучки монет одинаковой величины. Если при этом весы оказались в равновесии, значит, все монеты на весах настоящие, а бракованная монета в оставшейся кучке. Тогда при втором взвешивании на одну чашку весов Буратино положит кучку с бракованной монетой, а на вторую — столько настоящих монет, сколько всего монет он положил на первую чашку, и тогда он сразу определит, легче фальшивая монета, чем настоящие, или тяжелее. Если же при первом взвешивании весы оказались не в равновесии, значит, все монеты в оставшейся кучке настоящие. Тогда Буратино уберёт с весов лёгкую кучку, а монеты из тяжёлой кучки разделит на две равные части и положит на весы (если в кучке было 5 или 7 монет, предварительно добавит к ним одну настоящую монету). Если при втором взвешивании весы оказались в равновесии, значит, фальшивая монета легче настоящих, а если нет, то тяжелее.
Пусть скорость автобуса x км/ч, тогда скорость грузовой машины (x+17) км/ч. Скорость сближения x+x+17 = 2x+17 км/ч. Встретились через 3 часа, то есть
(2x+17)\cdot3=453\\2x+17=151\\2x=134\\x=67
Скорость автобуса 67 км/ч, грузовой машины 67+17 = 84 км/ч система уравнений:
Пусть скорость автобуса x км/ч, скорость грузовой машины y км/ч.
Скорость грузовой машины на 17 км/ч больше скорости автобуса, т.е. y-x = 17.
Встретились через 3 часа, то есть (x+y)*3 = 453.
Составим и решим систему уравнений
\begin{cases}y-x=17\\(x+y)\cdot3=453\end{cases}\Rightarrow\begin{cases}x=y-17\\(y-17+y)\cdot3=453\end{cases}(y-17+y)\cdot3=453\\2y-17=151\\2y=168\\y=84\\\begin{cases}x=84-17=67\\y=84\end{cases}
Скорость автобуса 67 км/ч, грузовой машины 84 км/ч.
Пошаговое объяснение:
ответ: