1) Пусть уроков было N. Пусть Петя победил a раз, Коля b раз, Вася c раз.
Пусть Петя пропустил 1 урок, то есть был на N-1 уроке. Тогда:
Петя получил 4a + 1*(N-1-a) = N + 3a - 1 = 29 конфет.
Коля получил 4b + 1*(N-b) = N + 3b = 32 конфеты
Вася получил 4c + 1*(N-c) = N + 3c = 37 конфет
Из 1 уравнения получаем:
N + 3a = 30, N = 30 - 3a = 3(10 - a), то есть N кратно 3.
Тогда N - 3b и N - 3c тоже были бы кратны 3, но этого нет.
Значит, урок пропустил НЕ Петя.
Пусть урок пропустил Коля. Тогда получится:
Петя получил 4a + 1*(N-a) = N + 3a = 29 конфет.
Коля получил 4b + 1*(N-1-b) = N + 3b - 1 = 32 конфеты
Вася получил 4c + 1*(N-c) = N + 3c = 37 конфет
Тогда из 2 уравнения N + 3b = 33; N = 33 - 3b = 3(11 - b).
Получаем тоже самое: из 2 уравнения N кратно 3, а из 1 и 3 - нет.
Значит, урок пропустил Вася.
Петя получил 4a + 1*(N-a) = N + 3a = 29 конфет.
Коля получил 4b + 1*(N-b) = N + 3b = 32 конфеты
Вася получил 4c + 1*(N-1-c) = N + 3c - 1 = 37 конфет
Теперь из 3 уравнения: N = 38 - 3c, N на 3 не делится, все сходится.
Если написать 4 уравнение: a + b + c = N, то получаем систему:
{ N + 3a = 29
{ N + 3b = 32
{ N + 3c = 38
{ a + b + c = N
Но из этой системы получается N = 99/6 = 16,5, что невозможно.
Так что в задаче ошибка, но тем не менее
ответ: урок пропустил Вася.
2) Я не знаю, как это доказать, с геометрией у меня сложности.
3) Это намного проще, чем 1)
494 = 2*13*19 = 13*38
Это число 138.
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12