Вообще, задачу легко можно представить на диаграмме Эйлер-Венна, но в программе Перспектива (учебники Дорофеев, Миракова, Бука) эти диаграммы не изучались. А вот задачи по ним, почему-то, даются...
Что же, будем решать без построения диаграммы, хотя это было бы очень наглядно и хорошо прояснило бы решение.
Пошаговое объяснение:
1) 100 − 10 = 90 (ч.) - знают какой-либо язык
2) 90 − 75 = 15 (ч.) - знают французский, но не знают немецкого
3) 90 − 83 = 7 (ч.) - знают немецкий язык, но не знают французского
4) 90 − (15 + 7) = 90 − 22 = 68 (ч.) - знают оба языка
ответ: 68 туристов знали оба языка.
х+2 - второй охотник
х+1 - третий охотник
х - 4 охотник
По условию (х+3) + (х+2) + (х+1) + х = 306.
Составим и решим уравнение:
(х+3) + (х+2) + (х+1) + х = 306
4х+6=306
4х=300
х =75.
ответ: 75.
2. Оленьих 11