ответ: 8√3 см²
Пошаговое объяснение:
Обозначим пирамиду МАВС. Высота МН пирамиды перпендикулярна основанию и образует с боковыми ребрами углы 45°, следовательно, второй острый угол тоже 45°, боковые ребра - гипотенузы равных прямоугольных равнобедренных треугольников с общим катетом - высотой пирамиды, а их проекции равны радиусу описанной около основания окружности. Вершина пирамиды проецируется в центр этой окружности, – середину гипотенузы основания. АН=СН=ВН=МН=4 см, АВ=2•4=8 см. Катет АС=АВ•cos∠CAB=8•√3/2=4√3. Одна из формул площади треугольника S=0,5•a•b•sinα. ⇒ S(ABC)=0,5•0,AB•AC•sin30°=0,5•8•4√3•1/2=8√3 см²
ответ: 8√3 см²
Пошаговое объяснение:
Обозначим пирамиду МАВС. Высота МН пирамиды перпендикулярна основанию и образует с боковыми ребрами углы 45°, следовательно, второй острый угол тоже 45°, боковые ребра - гипотенузы равных прямоугольных равнобедренных треугольников с общим катетом - высотой пирамиды, а их проекции равны радиусу описанной около основания окружности. Вершина пирамиды проецируется в центр этой окружности, – середину гипотенузы основания. АН=СН=ВН=МН=4 см, АВ=2•4=8 см. Катет АС=АВ•cos∠CAB=8•√3/2=4√3. Одна из формул площади треугольника S=0,5•a•b•sinα. ⇒ S(ABC)=0,5•0,AB•AC•sin30°=0,5•8•4√3•1/2=8√3 см²
3 3/11-1 2/9=36/11*11/9=4
4-2 3/8=4/1-19/8=(32-19)/8=13/8
13/8*16/39=2/3
2) (9/16+4 2/3*9/56)*1 1/7= 1 1/2
4 2/3*9/56=14/3*9/56=3/4
9/16+3/4=(9+12)/16=21*16
21/16*1 1/7=21/16*8/7=3/2=1 1/2