109
Пошаговое объяснение:
n - количество плиток.
Количество плиток на площадь квадратной площадки:
n<13²; n<169
При укладывании по 11 плиток в ряд остаётся неполный ряд, что будет составлять количество плиток от 1 до 10 (включительно). При укладывании по 12 плиток остаётся неполный ряд, где на 9 плиток меньше, чем в неполном ряду при укладывании по 11 плиток:
10-9=1 плитка составляет неполный ряд (другие вычисления не подходят) при укладывании по 12 плиток.
Отсюда следует, что 10 плиток составляют неполный ряд при укладывании по 11 плиток.
По формуле деления с остатком (n=mk+r)составляем систему уравнений:
n=11k+10
n=12k+1, где
k - частное.
11k+10=12k+1
k=9 - частное.
n=11·9+10=99+10=109 плиток осталось после строительства ангара.
Пошаговое объяснение:
Направление движения: на встречу друг другу.
Выехали из двух городов одновременно.
Расстояние между городами 735 км.
Скорость автобуса х км/ч.
Скорость грузовой машины на 17 км/ч больше скорости автобуса.
Время движения 5 ч.
Найди скорости автобуса и грузовой машины.
Расстояние, на которое сближаются грузовая машина и автобус за единицу времени, называют скоростью сближения vсбл.
В случае движения двух объектов навстречу друг другу скорость сближения равна: vсбл = v1 + v2.
Если начальная расстояние между городами равна S километров и грузовая машина и автобус встретились через tвстр ч, то S = vсбл * tвстр = (v1 + v2) * tвстр, км.
Пусть скорость автобуса v1 примем за х км/ч, тогда скорость грузового автомобиля v2 равна (х + 17) км/ч.
Согласно условию задачи, нам известно, что расстояние между городами S = 735 км и tвстр = 5 ч, подставим значения в формулу:
(х + (х + 17)) * 5 = 735
(х + х + 17) * 5 = 735
(2х +17) * 5 = 735
2х +17 = 735 : 5
2х +17 = 147
2х = 147 – 17
2х = 130
х = 130 : 2
х = 65
Скорость автобуса равна 65 км/ч.
Скорость грузовой машины равна: 65 + 17 = 82 км/ч.
ответ: скорость автобуса — 65 км/ч; скорость грузовой машины — 82 км/ч.
ответ: 12 кг кабачков