Проекция СН наклонной АС равна расстоянию от А до плоскости, т.к.АНС - равнобедренный прямоугольный треугольник.
Проекцию ВН наклонной АВ найдем из прямоугольного треугоьника АВН, где гипотенуза А вдвое больше АН, который противолежит углу 30 градусов.
На плоскости имеем треугольник со сторонами 10, 10√3, углом 30 градусов между ними и стороной, которую надлежит найти.
Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними:
a² = b² + c² — 2bс · cos α
сos (30°) = cos (π/6) = (√3)/2
ВС²=300+100 -200√3·(√3)/2=
ВС²=400 -300=100
ВС=√100=10 см
∆ ABM ∞ ∆ CDM
CM = DC
AM _ AB
x = 30
39 – x_ 15
x = 2
39 – x
x = 2 (39 – x)
x = 78 – 2x
3x = 78
x = 26
ответ: 26