Y = 2/3*x³ + 1/2*x² +5
ИССЛЕДОВАНИЕ
1.Область определения D(x) - Х∈(-∞;+∞) - непрерывная.
2. Пересечение с осью Х. Корень: х₁ ≈ - 3,0.
3. Пересечение с осью У. У(0) = 5.
4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞.
5. Исследование на чётность.Y(-x) ≠ - Y(x).
Функция ни чётная ни нечётная.
6. Производная функции.Y'(x)= 2*x² + х - 3 = 0 .
Корни: х₁= -3/2 , х₂ = 1.
7. Локальные экстремумы.
Максимум Ymax(- 3/2)= 67/8 = 8,375 ,
минимум – Ymin(1)= 19/6 = 3,1(6).
8. Интервалы монотонности.
Возрастает - Х∈(-∞;-1,5]∪[1;+∞) , убывает = Х∈[-1.5; 1].
8. Вторая производная - Y"(x) = 4*x + 1=0.
Корень производной - точка перегиба - x = - 1/4.
9. Выпуклая “горка» Х∈(-∞;-1/4], Вогнутая – «ложка» Х∈[-1/4;+∞).
10. Область значений Е(у) У∈(-∞;+∞)
11. Наклонная асимптота. Уравнение по формуле: Y = limY(∞)=(k*x+b – f(x).
k=lim(∞)Y(x)/x . = ∞. Наклонной асимптоты - нет
12. График в приложении.
Власна швидкість катера 14 км/год.
Пошаговое объяснение:
власна швидкість х,
швидкість за течією х+2, час 40/(х+2)
швидкість проти течії х-2,час 6/(х-2)
40/(х+2)+ 6/(х-2)=3
40(x-2)+6(x+2)=3(x^2-4)
40x-80+6[+12=3x^2-12
3x^2-46x+56=0
D=1444
x=14
x2=4/3 не удовл.