Из вершины В параллелограмма ABCD проведем высоту ВН к стороне AD. Рассмотрим треугольник АВН: угол АНВ = 90 градусов (так как ВН - высота, перпендикуляр), АВ = 6 см (по условию) - гипотенуза (так как лежит против угла 90 градусов), угол ВАН = угол А = 30 градусов (по условию). Катет ВН лежит против угла равного 30 градусов, поэтому:
ВН = АВ/2 (свойство прямоугольного треугольника);
ВН = 6/2 = 3 (см).
Площадь параллелограмма находится по формуле:
S = a*h,
где а - сторона параллелограмма, h - высота, опущенная на сторону а.
S = AD*BH;
S = 10*3 = 30 (см квадратных).
ответ: S = 30 см квадратных.
обозначим х за скорость катеров
формула - S=V*t
225/х -2 = 95/х
130/х=2
х=65
Но в задаче спрашивается время каждого катера
225/65=45/13 = 3 6/13
и
95/65 = 19/13 = 1 6/13