Дана функция у = x^3-3x^2+4 1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет. 2-Выяснить является ли чётной или нечётной. Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x³ - 3*x² + 4 = 4 - x³ - 3*x - Нет x³ - 3*x² + 4 = -4 - -x³ - -3*x² - Нет, значит, функция не является ни чётной, ни нечётной. 3-определить точки пересечения функции с координатными осями . График функции пересекает ось X при f = 0 значит надо решить уравнение: x³−3x²+4=0. В кубическом уравнении надо пробовать поиски корней с +-1. Подходит х = -1. Тогда заданное уравнение можно разложить на множители, поделив исходное уравнение на х+1. Получаем x³−3x²+4 = (х+1)(х²-4х+4) = (х+1)(х-2)² = 0. Имеем 2 корня: х = -1 и х = 2. График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^3 - 3*x^2 + 4. 0³−3*0²+4 = 4.Точка: (0, 4) 4-найти критические точки функции. Находим производную и приравниваем её нулю: y' = 3x²-6x = 3x(x-2). Имеем 2 критические точки: х = 0 и х = 2.5-определить промежутки монотонности (возрастания,убывания). Исследуем поведение производной вблизи критических точек. х = -0.5 0 0.5 1.5 2 2.5 y'=3x^2-6x 3.75 0 -2.25 -2.25 0 3.75. Где производная отрицательна - функция убывает, где положительна - функция возрастает. Убывает на промежутках (-oo, 0] U [2, oo) Возрастает на промежутках [0, 2] 6-определить точки экстремума. Они уже найдены: это 2 критические точки: х = 0 и х = 2. Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции. Минимум функции в точке: x = 2, Максимум функции в точке: х = 0. 7 -определить максимальное и минимальное значение функции. Значения функции в экстремальных точках: х = 2, у = 8-3*4+4 = 0, х = 0, у = 4.8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба. Найдем точки перегибов, для этого надо решить уравнение d2/dx2f(x)=0(вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции, d2/dx2f(x)=6(x−1)=0 Решаем это уравнение Корни этого ур-ния x1=1 Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках [1, oo) Выпуклая на промежутках (-oo, 1].
ИССЛЕДОВАНИЕ
1. Область определения.
Решаем квадратное уравнение. D=33. Х1≈ -2,37, Х2 ≈ 3,37. Две точки разрыва.
D(x)∈(-∞;-2.37)∪(-2.37;3.37)∪(3.37;+∞).
Наклонные асимптоты - X≈ -2.37, X≈ 3.37
2. Пересечение с осью Х - нет.
3. Пересечение с осью У. У(0) = 7/8.
4. Поведение на бесконечности.
limY(-∞) =0, limY(+∞) = 0.
Наклонная асимптота - Y = 0.
5. .Функция ни чётная ни нечётная.
6. Производная функции.
Y'(x)= (14x-7)/(-x²+x+8)².
7. Корень при Х= 1/2 . Минимум – Ymin(0,5)=0,8485.
Возрастает - Х∈(0,5;3,37)∪(3,37;+∞).
Убывает = Х∈(+∞;-2,37)∪(-2,37;0,5).
8. Точек перегиба - нет.
Выпуклая “горка» Х∈(-∞;-2,37)∪(3,37;+∞),
Вогнутая – «ложка» Х∈(-2,37;3,37).
9. График в приложении.