Пошаговое объяснение:
1) Сумма односторонних углов = 180°. Один угол = х°, второй
(х°+30°).
180=2х+30 ⇒ 2х=150 , х°=75° , х°+30°=105°
Один угол = 75°, а второй - 105° .
2) Боковая сторона = х см , основание равнобедренного треугольника = (х+5) см .
Периметр равен: 2х+(х+5)=12 ⇒ 3х+5=12 , 3х=7 , х=2 1/3 см
Основание равнобедр. треуг. = (2 1/3+5)=7 и 1/3 см .
3) Касательные перпендикулярны радиусам окр-ти, проведённым в точку касания ⇒ ∠ОАМ=90° и ∠ОВМ=90° .
Сумма углов четырёхугольника АМВО равна 360° ⇒
∠АОВ=360°-90°-90°-16°=164°
ΔАОВ - равнобедренный, т.к. ОА=ОВ=R ⇒
∠ОАВ=∠ОВА=(180°-164°):2=8°
4) Провести прямую АВ, затем раствором циркуля более половины отрезка АВ, из точек А и В сделать засечки с обеих сторон от прямой. Соединить точки пересечения засечек СК. Это и будет перпендикуляр.
Пошаговое объяснение:
1. Выразим b через x:
{2x^2 + (3b - 1)x - 3 = 0;
{6x^2 - (2b - 3)x - 1 = 0;
{(3b - 1)x = 3 - 2x^2;
{(2b - 3)x = 6x^2 - 1;
{3b - 1 = (3 - 2x^2)/x;
{2b - 3 = (6x^2 - 1)/x;
{3b = (3 - 2x^2)/x + 1;
{2b = (6x^2 - 1)/x + 3;
{6b = 2(3 - 2x^2)/x + 2;
{6b = 3(6x^2 - 1)/x + 9.
2. Приравняем правые части уравнений:
2(3 - 2x^2)/x + 2 = 3(6x^2 - 1)/x + 9;
2(3 - 2x^2) + 2x = 3(6x^2 - 1) + 9x;
6 - 4x^2 = 18x^2 - 3 + 7x;
22x^2 + 7x - 9 = 0;
D = 7^2 + 4 * 22 * 9 = 49 + 792 = 841 = 29^2;
x = (-7 ± 29)/44;
1) x1 = (-7 - 29)/44 = -36/44 = -9/11;
b = ((6x^2 - 1)/x + 3)/2;
b = 3x - 1/2x + 3/2 = -27/11 + 11/18 + 3/2 = (-486 + 121 + 297)/198 = -68/198 = -34/99 (не целое число);
2) x2 = (-7 + 29)/44 = 22/44 = 1/2;
b = 3x - 1/2x + 3/2 = 3/2 - 1 + 3/2 = 2 (целое число).
ответ: 2.
Одну: (1,2). Т.к. только в этой точке касательная будет параллельна оси Ox