К дробям применимы самые разные арифметические операции.
Приведение дроби к общему знаменателюНапример, необходимо сравнить дроби 3/4 и 4/5.
Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей
Наименьший общий знаменатель(4,5) = 20
Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю
ответ: 15/20 < 16/20
Сложение и вычитание дробейЕсли необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.
Например, необходимо найти сумму дробей 1/2 и 1/3
ответ: 5/6
Теперь найдем разность дробей 1/2 и 1/4
ответ: 1/4
Умножение и деление дробейТут решение дробей несложное, здесь все достаточно просто:
Умножение - числители и знаменатели дробей перемножаются между собой;Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.Например:
На этом о том, как решать дроби, всё. Если у вас остались какие то вопросы по решению дробей, что то непонятно, то пишите в комментарии и мы обязательно вам ответим.
Для закрепления материала рекомендуем также посмотреть наше видео:
1. Различных составления расписания столько, сколько существует пятиэлементных упорядоченных подмножеств
Число составления расписания равно числу перестановок из пяти.
P_5=5!=120P
5
2. Число выбрать четырёх человек для участия в математической олимпиаде равно числу сочетания из 32 по 4(порядок выбора учеников не важен) :
C^4_{32}= \dfrac{32!}{4!28!}= 35960C
32
4
=
4!28!
32!
=35960
3. На первое место можно выбрать любые из шести заданных цифр, то есть, можно выбрать на второе месте можно выбрать оставшиеся из пяти цифр
По правилу произведения, составить различных двузначных чисел можно
4. Всего шариков изначально было 45+17= 62 и два шарика потеряли(белых), тогда останется всего 60 шариков из них 15 белых.
Вероятность того, что выбранный наугад шарик будет белым равна
P=15/60 = 0.25
5. Всего все возможных подбрасывания трёх монет равно 2³ = 8 из них перечислим благоприятные.
\{P;\Gamma;\Gamma\},~\{\Gamma;P;\Gamma\},~\{\Gamma;\Gamma;P\}{P;Γ;Γ}, {Γ;P;Γ}, {Γ;Γ;P} - три варианта.
Искомая вероятность: P = 3/8 = 0.375
6. Всего все возможных выбора билетов - 1000000 среди них 1200+800 = 2000 выигрышных.
Искомая вероятность: P=2000/1000000=0.002
7. Всего двузначных чисел 99-9=90 из них есть те числа которые при делении на 13 даёт в остатке 5:
18; 31; 44; 57; 70; 83; 96 - всего 7
Искомая вероятность: P = 7/90.
Пошаговое объяснение:
Смотрите решение на фотографии