Я объясню. Какое (наименьшее) число делится (без остатка) и на 15, и на 10? Представим эти числа как произведение множителей: 15=3*5, число 10=2*5. Общие множители выделите (подчеркните).
Значит, искомое число (наименьшее общее КРАТНОЕ) должно содержать ВСЕ множители, которые есть в числах 3*5 и 2*5.
Понятно, что это будет 3*5*2 (добавляете к множителям первого числа еще множители второго числа, не повторяя общий множитель 5 - он же УЖЕ записан) и полученное число 30=3*5*2 будет КРАТНО и 10=2*5 (получим 3*5*2 : 2*5 = 3), и кратно 15=3*5 (получим 3*5*2 : 3*5 = 2).
Поэтому, когда нам нужно сложить дроби с РАЗНЫМИ знаменателями, например, 1/10 + 2/15, мы будем приводить их к ОБЩЕМУ знаменателю: 1/10=3/30, 2/15=4/30 и после этого складывать дроби с однинаковым, общим знаменателем: 3/30+4/30=(3+4)/30=7/30.
б)18=2*3*3
в)12=2*2*3
г)16=2*2*2*2
д)25=5*5
е)35=7*5
ж)40=2*2*2*5
90=2*3*3*5
123-составное=3*41
279-сост=3*3*31
335-сост
642-сост