Рассмотрим вариант, когда наименьшее число из десяти подряд больше 2. В данном ряду ровно 5 нечетных чисел, причем эти 5 последовательных нечетных чисел имеют вид:
2k + 1; 2(k+1) + 1; 2(k+2) + 1; 2(k+3) + 1; 2(k+4) + 1, где k - натуральное число.
Cреди чисел: k; k+1; k+2; k + 3; k + 4 обязательно найдется хотя бы одно такое число a1, дающее при делении на 3 остаток 1, тогда 2a1+1 будет кратно 3.
Таким образом, в таком ряду не более 4 простых чисел.
Привести пример ряда с 4 простыми числами не сложно: 3,4,5,6,7,8,9,10,11,12 - 4 простых числа.
Для 2 чисел тоже несложно:
20,21,22,23,24,25,26,27,28,29 (23,29)
Для 3 чисел тоже легко:
23,24,25,26,27,28,29,30,31 (23,29,31)
Может ли среди 10 подряд не быть простых чисел вообще?
Легко!
Возьмем любое число, которое одновременно кратно на 2,3,4,5,6,7,8,9,10,11 (например, k = 8*5*9*7*11 )
Но тогда числа:
k+2; k+3; k+4; k+5; k+6; k + 7; k + 8; k + 9; k + 10; k + 11 - cоставные, ибо кратны на прибавляемое к k число, при этом все эти числа больше 11.
Если продолжать смещать эти 10 чисел по одной единице вправо, то рано или поздно встретим первое простое число, ибо простых чисел бесконечно много, то есть мы рано или поздно нарвемся на 10 последовательных чисел с ровно одним простым числом.
Кроет уж лист золотой Влажную землю в лесу… Смело топчу я ногой Вешнюю леса красу.С холоду щеки горят; Любо в лесу мне бежать, Слышать, как сучья трещат, Листья ногой загребать!Нет мне здесь прежних утех! Лес с себя тайну совлек: Сорван последний орех, Свянул последний цветок;Мох не приподнят, не взрыт Грудой кудрявых груздей; Около пня не висит Пурпур брусничных кистей;Долго на листьях, лежит Ночи мороз, и сквозь лес Холодно как-то глядит Ясность прозрачных небес…Листья шумят под ногой; Смерть стелет жатву свою… Только я весел душой И, как безумный, пою!Знаю, недаром средь мхов Ранний подснежник я рвал; Вплоть до осенних цветов Каждый цветок я встречал.Что им сказала душа, Что ей сказали они — Вспомню я, счастьем дыша, В зимние ночи и дни!Листья шумят под ногой… Смерть стелет жатву свою! Только я весел душой — И, как безумный, пою!
0,1,2,3,4,5
Пошаговое объяснение:
Рассмотрим вариант, когда наименьшее число из десяти подряд больше 2. В данном ряду ровно 5 нечетных чисел, причем эти 5 последовательных нечетных чисел имеют вид:
2k + 1; 2(k+1) + 1; 2(k+2) + 1; 2(k+3) + 1; 2(k+4) + 1, где k - натуральное число.
Cреди чисел: k; k+1; k+2; k + 3; k + 4 обязательно найдется хотя бы одно такое число a1, дающее при делении на 3 остаток 1, тогда 2a1+1 будет кратно 3.
Таким образом, в таком ряду не более 4 простых чисел.
Привести пример ряда с 4 простыми числами не сложно: 3,4,5,6,7,8,9,10,11,12 - 4 простых числа.
Для 2 чисел тоже несложно:
20,21,22,23,24,25,26,27,28,29 (23,29)
Для 3 чисел тоже легко:
23,24,25,26,27,28,29,30,31 (23,29,31)
Может ли среди 10 подряд не быть простых чисел вообще?
Легко!
Возьмем любое число, которое одновременно кратно на 2,3,4,5,6,7,8,9,10,11 (например, k = 8*5*9*7*11 )
Но тогда числа:
k+2; k+3; k+4; k+5; k+6; k + 7; k + 8; k + 9; k + 10; k + 11 - cоставные, ибо кратны на прибавляемое к k число, при этом все эти числа больше 11.
Если продолжать смещать эти 10 чисел по одной единице вправо, то рано или поздно встретим первое простое число, ибо простых чисел бесконечно много, то есть мы рано или поздно нарвемся на 10 последовательных чисел с ровно одним простым числом.
Рассмотрим варианты с начальным числом менее 3:
1,2,3,4,5,6,7,8,9,10 (4 простых)
2,3,4,5,6,7,8,9,10,11 (5 простых)
То есть возможно от 0 до 5 простых чисел.