М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
katyademona04
katyademona04
12.01.2020 05:32 •  Математика

Уважаемые МОЗГи! Задание, достойное Вас Найти общее решение линейного однородного уравнения с пере">

👇
Ответ:
Amaliya211013
Amaliya211013
12.01.2020

1) y=C_1cosx+C_2e^x

2) y=C_1x^3+C_2e^x

Пошаговое объяснение:

ЛОДУ 2ого порядка с переменными коэффициентами имеет вид a_0(x)y''+a_1(x)y'+a_2(x)=0

Общее решение такого ДУ - линейная комбинация двух его линейно независимых частных решений.

В обоих заданиях необходимо заметить, что сумма коэффициентов a_i(x) равна 0. Значит, очевидно, одним из частных решений данного ДУ будет функция y_2=e^x [и действительно: y_2''=y_2'=y_2, а тогда уравнение принимает вид e^x(a_1(x)+a_2(x)+a_3(x))=0\Rightarrow e^x*0=0 - верное равенство].

1) Рассмотрим Вронскиан системы y_1(x),y_2(x):

W(x)=\left|\begin{array}{cc}cos(x)&e^x\\-sin(x)&e^x\end{array}\right|=e^x(cosx+sinx)\not\equiv0

Значит, данные частные решения линейно независимы - а тогда общее решение имеет вид y=C_1cosx+C_2e^x.

2) Очевидно искать частное решение в виде многочлена. Пусть его старший член равен x^n,n\in N [коэффициент при старшей степени не имеет значения, т.к. уравнение однородное], т.е. y_1(x)=x^n+P_{n-1}(x).

Тогда

(x^2-3x)(n(n-1)x^{n-2}+P''_{n-1}(x))+(6-x^2)(nx^{n-1}+P'_{n-1}(x))+(3x-6)(x^n+P_{n-1}(x))=0\\ x^{n}(n(n-1))+x^2P''_{n-1}(x)-3n(n-1)x^{n-1}-3xP''_{n-1}(x)+6nx^{n-1}+6P'_{n-1}(x)-\\ -nx^{n+1}-x^2P'_{n-1}(x))+3x^{n+1}+3xP_{n-1}(x)-6x^n-6P_{n-1}(x)=0

То есть коэффициент при старшей степени x^{n+1} получаемого в левой части многочлена равен 3-n [степень P'_{n-1}(x) не выше n-2, а P''_{n-1}(x) не выше n-3]. Но в правой части тождественный ноль - а значит если некий многочлен и является частным решением уравнения, то это многочлен степени 3.

Нетрудной подстановкой y_1=x^3 убеждаемся, что это решение ДУ:

(x^2-3x)6x+(6-x^2)3x^2+(3x-6)x^3=0\Rightarrow 6x^3-18x^2+18x^2-3x^4+3x^4-6x^3=0 - верное равенство.

W(x)=\left|\begin{array}{cc}x^3&e^x\\3x^2&e^x\end{array}\right|=e^x(x^3-3x^2)\not\equiv0

А тогда общее решение имеет вид

y=C_1x^3+C_2e^x

4,4(80 оценок)
Открыть все ответы
Ответ:
mokajuma77
mokajuma77
12.01.2020
В скобке правой части сумма арифметической прогрессии с разностью, равной 1 и первым членом 1, ее сумма равна (1+n)*n/2, поскольку скобка справа в квадрате, то (1 + 2 + ... + n)²= ((1+n)*n/2)²=
(1+n)²*n²/4, значит, нужно доказать, что 1³ + 2³ + ... + n³ = (1+n)²*n²/4,
1. Берем n=1 /база/, проверяем справедливость равенства.1³=2²*1²/4=1
2. Предполагаем, что для n=к равенство выполняется.
т.е. 1³ + 2³ + ... + к³ = (1+к)²*к²/4
3. Докажем, что для n= к+1 равенство выполняется. т.е., что
1³ + 2³ + ... + (к+1)³ = (1+к)²*(2+к)²/4
(1³ + 2³ + ... к³)+ (к+1)³ =(1+к)²*к²/4+ (к+1)³=(к+1)²*(к²+4к+4)/4=(1+к)²*(2+к)²/4

Вот доказательство математической индукцией
4,5(99 оценок)
Ответ:
Krossmans111
Krossmans111
12.01.2020

840 кг.

Пошаговое объяснение:

Первый день - 2/5

Второй день - 1/4

Третий день - ?

Всего за три дня - 2400 кг

1) 2/5 · 2400 = 2400 : 5 · 2 = 960 (кг) - продано в первый день;

2) 1/4 · 2400 = 2400 : 4 · 1 = 600 (кг) - продано во второй день;

3) 960 + 600 = 1560 (кг) - продано за два дня вместе;

4) 2400 - 1560 = 840 (кг) - продано в третий день.

- - - - - - - - - - - - - - -

Весь сахар примем за единицу (целое).

1) 2/5 + 1/4 = 8/20 + 5/20 = 13/20 - продано за два дня;

2) 1 - 13/20 = 20/20 - 13/20 = 7/20 - продано в третий день;

3) 7/20 · 2400 = 2400 : 20 · 7 = 840 (кг) - столько сахара продали за третий день.

Вiдповiдь: 840 кг.

4,6(8 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ