Откуда берутся нули в конце такого произведения? Нули получаются при перемножении чисел 2 и 5. Ищем эти произведения:
1*2*3*4*5*...
2*5=10 - "первый" ноль
... 7*8*9*10...
10 - "готовый" ноль. Но ведь это тоже 10=2*5.
Далее по факториалу:
20=2(2*5); ... 60=3*2*(2*5)
Вобщем, неважно какие еще множители в числе, кроме двойки и пятерки. Эти множители дают какие-то цифры нашего числа перед конечными нулями. Количество нулей определяется только количеством произведения 2*5 в записи факториала.
Т.е. наша задача разложить наш факториал на простые множители, и посчитать количество произведений 2*5.
Но, логически подумав: ведь двоек в разложении значительно больше, чем 5-ок (каждое второе число - четное, т.е. содержит 2-ку), и лишь каждое пятое число кратно 5 (отсчет в обоих случаях делаем слева-направо от первого множителя - 1). Значит необходимо (и достаточно) подсчитать количество пятерок в произведении (двойки для них однозначно найдутся).
Вот и считаем каждое 5-ое число от 1 до 4375. Сколько пятерок? А вот сколько:
4375:5=875;
Но когда мы отсчитываем каждое пятое число, мы доходим до числа :
5-10-15-20-25-30...
Число 25 дает нам "лишнюю" пятерку 25=5².
Сколько таких "лишних" пятерок? А вот сколько:
4375:25=175.
Т.к. число 4375 достаточно большое, то отсчитывая пятерки мы дойдем до числа 125, которое дает еще одну "лишнюю" пятерку (125=5³).
Сколько таких "лишних"? А вот сколько:
4375:125=35.
Следующая степень пятерки 5⁴=625.
4375/625=7.
4375/5⁵=1,4 - дает последнюю одну "лишнюю" пятерку.
1) Находим область определения: вся числовая ось, кроме х = -5 / 4 (при этом значении знаменатель превращается в ноль). 2) Находим точки пересечения с осями: х = 0 у = -3/5 это точка пересечения с осью у. у = 0 надо числитель приравнять 0: 2х - 3 = 0 х = 3/2 это точка пересечения с осью х. 3) Исследуем функцию на парность или непарность: Функция называется парной, если для любого аргумента с его областью обозначения будет f(-x)=f(x), или же непарной - если для любого аргумента с областью обозначения будет f(-x)=-f(x). К тому же, график парной функции будет симметричным относительно оси ординат, а график непарной - симметричным относительно точки (0;0). Правда, чаще встречается название этих свойств функции как чётность и нечётность. 2*x - 3 -3 - 2*x ---------- = ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет 2*x - 3 -3 - 2*x ---------- = - ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет, значит, функция не является ни чётной, ни нечётной. 4) Исследуем функцию на монотонность: — это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает. Если производная положительна, то функция возрастает и наоборот. . Так как переменная в квадрате, то производная всегда положительна, а функция возрастающая на всей числовой оси (кроме х = -5/4). 5) Находим экстремумы функции: Так как переменная находится в знаменателе, то производная не может быть равна нулю. Следовательно, функция не имеет ни максимума, ни минимума. 6) Исследуем функции на выпуклость, вогнутость: Если вторая производная меньше нуля, то функция выпуклая, если производная больше нуля - то функция вогнутая. Вторая производная равна . При x > (-5/4) функция выпуклая, при x < (-5/4) функция вогнута. 7) Находим асимптоты графика функции: Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 2*x - 3 lim ------- = 1/2 x->-oo4*x + 5 значит,уравнение горизонтальной асимптоты слева:y = 1/2 2*x - 3 lim ------- = 1/2 x->oo4*x + 5 значит,уравнение горизонтальной асимптоты справа:y = 1/2Наклонные асимптотыНаклонную асимптоту можно найти, подсчитав предел функции (2*x - 3)/(4*x + 5), делённой на x при x->+oo и x->-oo 2*x - 3 lim ----------- = 0 x->-oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой справа 2*x - 3 lim ----------- = 0 x->oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой слева 8) Можно найти дополнительные точки и построить график График и таблица точек приведены в приложении.
1)Формула сложения двух чисел есть а+b, где а и b означают всякия слагаемыя.2)Формула вычитания есть а — b,где а означает какое нибудь уменьшаемое, а b какое нибудь вычитаемое…5)Формула (а + b — с)d показывает, что надобно сложить два числа а и b, потом из суммы а+b вычесть c, и полученный остаток умножить на d напр. (5 + 7 — 4)2= 16. (с.2.п.1).§ 2. Обозначение формул.Формулой называется соединение двух выражений посредством знака равенства или неравенства.Формула со знаком равенства называется равенством; напр. a+b=b+a, аbс=сbа суть равенства.Формула со знаком неравенства называется неравенством: напр. аb>а+b, a/b < а —b суть неравенства.Всякая формула выражает некоторое соотношение между числами, в ней обозначенными. Формула, можно сказать, есть математическая фраза, написанная на математическом языке.Составить формулу значит выразить данное соотношение между числами посредством знаков чисел, знаков действий и знака равенства или неравенства. (с.4,п.2).Понятие степени вводится одновременно с понятием корня (с.6, п.1).Перемножение равных чисел называется возвышением в степень, а каждый множитель — корнем. Для сокращеннаго обозначения степени, пишется один раз корень, а над ним, немного выше, число, показывающее, сколько раз корень находится множителем Б степени, и названное показателем.Таким образом: а2 означает квадрат числа а; а3 куб числа а и т. д. Здесь а есть корень, а 2 и 3 суть показатели.Для показания, что число есть корень данной степени, употребляется знак корень, над которым пишется показатель степени, а по правую сторону знака пишется степень.
Поэтому 2 есть корень 4; 3 есть корень 27. Это выражается словами так: 2 есть квадратный корень из 4, а 3 есть кубический корень из 27…Мы впоследствии узнаем, как находить корни по данным степеням. Такое действие называется извлечением корня.Очень интересно вводится понятие отрицательного количества(с.9, п.1).Отрицательныя и положительныя количества.…Примером отрицательных чисел может служить: долг, убыток, проигрыш. Если кто нибудь имеет только 2 руб., а должен заплатить 5, то он заплатит только 2 руб. и останется в долгу Зр.,после того его денежное имущество выразится разностью 0 — 3 или отрицательным числом —3.При введении понятия о подобных членах говорится об их «соединении», а не современном «приведении», которое путают с «привидением» и не понимают, что нужно «видеть» и куда «вести» (с.12.п.1).ГЛАВА П. Соединение подобных членов. Первыя четыре действия над алгебраическими количествами. Показатели равные нулю и отрицательные.8. Подобные одночлены. Соединение подобных членов въ многочлен.Одночленныя количества называются подобными, если по отнятии у них знаков и коеффицыентов, получаются совершенно одинаковыя количества. Напр.:+ 3/4а2b и — 2/3а2b подобны, потому что, по отнятии у перваго +3/4, а у втораго —2/3, получим а2b и а2b.Правило знаков вполне обходилось без скобок (с.29-30 п.1).Алгебраическое деление и алгебраическия дроби. 18. Деление одночленов.1) Правило знаков. При делении положительных или отрицательных количеств, надобно сделать деление, не обращая внимания на знаки, потом пред частным написать знак +, когда у делимаго и делителя одинаковые знаки, и знак —, когда у них разные знаки. Это основано на том свойстве деления, что делимое равно делителю, помноженному на частное. Когда делимое имеет знак +, то делитель и частное должны иметь одинаковые знаки; след.(+а):(+b)=(+a/b) + (а:–b)=–а/bПоверка:(+а/b)х(+ b) = (+а/b)х b = +а(–а/b)х(– b) = (+а/b)х b = +аЕсли же делимое имеет знак —, то у делителя и частнаго должны быть разные знаки; след. (–a):(+ b)=(–a/b) (–a):(–b) =(+ a/b)Поверка: (– a/b)х(+b)= (–a/b)х b= –a (+ a/b)х (–b)=(– a/b)хb= –aПростым и ясным языком излагается обоснование нахождение наименьшего кратного нескольких целых алгебраических количеств до появления правила приведения дробей к одному знаменателю.
1 - нет
2 - да
3 - нет
4 - да).
Пошаговое объяснение:
4375!=1*2*3*4*5*...*4375.
Откуда берутся нули в конце такого произведения? Нули получаются при перемножении чисел 2 и 5. Ищем эти произведения:
1*2*3*4*5*...
2*5=10 - "первый" ноль
... 7*8*9*10...
10 - "готовый" ноль. Но ведь это тоже 10=2*5.
Далее по факториалу:
20=2(2*5); ... 60=3*2*(2*5)
Вобщем, неважно какие еще множители в числе, кроме двойки и пятерки. Эти множители дают какие-то цифры нашего числа перед конечными нулями. Количество нулей определяется только количеством произведения 2*5 в записи факториала.
Т.е. наша задача разложить наш факториал на простые множители, и посчитать количество произведений 2*5.
Но, логически подумав: ведь двоек в разложении значительно больше, чем 5-ок (каждое второе число - четное, т.е. содержит 2-ку), и лишь каждое пятое число кратно 5 (отсчет в обоих случаях делаем слева-направо от первого множителя - 1). Значит необходимо (и достаточно) подсчитать количество пятерок в произведении (двойки для них однозначно найдутся).
Вот и считаем каждое 5-ое число от 1 до 4375. Сколько пятерок? А вот сколько:
4375:5=875;
Но когда мы отсчитываем каждое пятое число, мы доходим до числа :
5-10-15-20-25-30...
Число 25 дает нам "лишнюю" пятерку 25=5².
Сколько таких "лишних" пятерок? А вот сколько:
4375:25=175.
Т.к. число 4375 достаточно большое, то отсчитывая пятерки мы дойдем до числа 125, которое дает еще одну "лишнюю" пятерку (125=5³).
Сколько таких "лишних"? А вот сколько:
4375:125=35.
Следующая степень пятерки 5⁴=625.
4375/625=7.
4375/5⁵=1,4 - дает последнюю одну "лишнюю" пятерку.
Суммируем:
4375/5¹ + 4375/5²+ 4375/5³+ 4375/5⁴+ 4375/5⁵=875+175+35+7+1=1093.
В конце числа 4375! 1093 нуля.
Итак это число не больше 1200 (1- нет), меньше 1100 (2-да), это -нечетное число (3-нет), сумма его цифр равна 13 (4- да).