Рассмотрим максимальное число победных игр: 75 : 3 = 25 (игр), но при таком варианте игр вничью быть не может.
Будем уменьшать число победных игр и считать, сколько за это команда получит очков. Предположим, что победных игр 24: 24 · 3 = 72. Таким образом, в данной конфигурации может быть 24 победы, 3 поражения и 3 ничьи.
Предположим, что победных игр 23: 23 · 3 = 69. Получаем, что 6 очков за ничью и 0 очков за поражение.
Предположим, что победных игр 22: 22 · 3 = 66. Получаем, что такой ситуации быть не может, так как максимальное число игр вничью — восемь, следовательно, 8 очков — 66 + 8 = 74, а в условии сказано, что команда набрала 75 очков.
Таким образом, наибольшее число ничейных матчей — 6.
1) 2/9=0,22
7/11=0,63
2) 3/50
3) площадь круга 3,14х13 в квадрате=3,14х169=530,66
длина окружности 2х3,14х13= 81,64
4) Это линейное уравнение первой степени. Имеет одно решение.
Для его решения нужно х перенести в левую часть уравнения, числа в правую часть уравнения. При переносе за знак равно, менять знаки на противоположные.
3,5 х - 2,8 = 1,4 х + 1,4
3,5 х - 1,4 х = 1,4 + 2,8
2,1 х = 4,2
х - неизвестный множитель. Чтобы найти его, нужно произведение ( 4,2 ) разделить на известный множитель ( 2,1 ).
х = 4,2 : 2,1
Делим на десятичную дробь 2,1. Для деления на десятичную дробь у делителя ( 2,1 ) и делимого ( 4,2 ) сдвигаем запятую вправо на столько знаков, сколько стоит после запятой у делителя ( 2,1 ).
У 2,1 после запятой один знак. Было 2,1 станет 21. Было 4,2 станет 42.
х = 42 : 21
х = 2.
Проверка:
3,5 * 2 - 2,8 = 1,4 * 2 + 1,4
7 - 2,8 = 2,8 + 1,4
4,2 = 4,2
Верное равенство.
ответ: х = 2.
5) 1) 74+15=89
2) 89х15=1335
6)хз
Пошаговое объяснение:
ответ: скорость грузовика 40 км/час. Скорость автомобиля 40+20=60 км7час.
Пошаговое объяснение: обозначим скорость грузовика v, скорость автомобиля v+20. Грузовик ехал 3,75-0,5 часа. Вместе за 3,75 часа они проехали 355 км. См фото.