Обозначим за x длину первого прыжка кузнечика, тогда длины остальных прыжков равны 2x, 4x, 8x, 16x. Предположим противное, пусть последним прыжком кузнечик вернулся в исходную точку. Тогда перед последним прыжком он находился на расстоянии 16x от неё. Покажем, что за четыре первых прыжка он не мог попасть в точку на расстоянии 16x от исходной. Действительно, суммарная длина первых четырех прыжков равна x+2x+4x+8x=15x, поэтому преодолеть расстояние в 16x с их невозможно. Следовательно, после пятого прыжка кузнечик не сможет вернуться в исходную точку. Аналогично можно доказать, что после любого другого прыжка кузнечик не сможет вернуться в исходную точку. Например, для третьего прыжка его длина равна 4x, а длина двух предыдущих прыжков равна x+2x=3x<4x.
Обозначим на координатной прямой две точки, которые соответствуют числам −4 и 2.Точка A, соответствующая числу −4, находится на расстоянии 4 единичных отрезков от точки 0 (начала отсчёта), то есть длина отрезка OA равна 4 единицам.Число 4 (длина отрезка OA) называют модулем числа −4.Обозначают модуль числа так: |−4| = 4Читают символы выше следующим образом: «модуль числа минус четыре равен четырём».Точка B, соответствующая числу +2, находится на расстоянии двух единичных отрезков от начала отсчёта, то есть длина отрезка OB равна двум единицам.Число 2 называют модулем числа +2 и записывают: |+2| = 2 или |2| = 2.Если взять некоторое число «a» и изобразить его точкой A на координатной прямой, то расстояние от точки A до начала отсчёта (другими словами длина отрезка OA) и будет называться модулем числа «a».|a| = OA
Модулем рационального числа называют расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.Так как расстояние (длина отрезка) может выражаться только положительным числом или нулём, можно сказать, что модуль числа не может быть отрицательным.Запишем свойства модуля с буквенных выражений, рассмотрев все возможные случаи.Модуль положительного числа равен самому числу. |a| = a, если a > 0;Модуль отрицательного числа равен противоположному числу. |−a| = a, если a < 0;Модуль нуля равен нулю. |0| = 0, если a = 0;Противоположные числа имеют равные модули. |−a| = |a|;Примеры модулей рациональных чисел:|−4,8| = 4,8|0| = 0|−3/8| = |3/8|
Пошаговое объяснение:
х-8=26
х=26+8
х=34
24:х=8
х=24:8
х=3
х*4=24+12
х*4=36
х=36:4
х=9
78:у=26
у=78:26
у=3