А) Находим частные производные. dz/dx=6*x+y-6, dz/dy=x-12*y-1 Полный дифференциал dz=dz/dx*dx+dz/dy*dy=(6*x+y-6)*dx+(x-12*y-1)*dy
б) Приравнивая частные производные нулю, получаем систему уравнений:
6*x+y-6=0 x-12*y-1=0
Решая её, находим x=1 и y=0 - координаты стационарной точки. Обозначим её через M(1,0). Находим вторые частные производные: d²z/dx²=6, d²z/dy²=-12, d²z/dxdy=1. Так как вторые частные производные есть постоянные величины, то они имеют такие же значения и в точке М: d²z/dx²(M)=6, d²z/dy²(M)=-12, d²z/dxdy(M)=1. Обозначим теперь d²z/dx²(M)=A, d²z/dxdy(M)=B, d²z/dy²(M)=C. Так как B²-A*C=1-6*(-12)=73>0, то точка М не является точкой экстремума. А так как других стационарных точек нет, то экстремума функция не имеет.
ответ: а) dz=(6*x+y-6)*dx+(x-12*y-1)*dy, б) функция не имеет экстремумов.
Решение: а) Общее число частей в отношении 7:3 7+3=10 (ч) На одну часть приходится: 4800:10=480 -первое число 480*7=3360 -второе число 480*3=1440 б) Числа можно соотнести: 1:4 Общее число частей: 1+4=5(ч) На одну часть приходится: 4800:5=960 -первое число 960*1=960 -второе число 960*4=3840 в) Общее число частей в соотношении 2/3 : 16 2/3+16=16 2/3=50/3 (ч) На одну часть приходится 4800 : 50/3=4800*3/50=288 -первое число 288*2/3=192 - второе число 288*16=4608 г) Числа находятся в отношении, обратном отношению чисел 3 и 2-это 2:3 Общее число частей: 2+3=5(ч) На одну часть приходится: 4800:5=960 -первое число 960*2=1920 - второе число 960*3=2880 д) Соотношение чисел 1/5:1 Общее число частей: 1/5+1=1 1/5(ч) На одну часть приходится: 4800 : 1 1/5=4800:6/5=4800*5/6=2400/6=4000 -первое число 4000*1/5=800 - второе число 4000*1=4000
dz/dx=6*x+y-6, dz/dy=x-12*y-1
Полный дифференциал dz=dz/dx*dx+dz/dy*dy=(6*x+y-6)*dx+(x-12*y-1)*dy
б) Приравнивая частные производные нулю, получаем систему уравнений:
6*x+y-6=0
x-12*y-1=0
Решая её, находим x=1 и y=0 - координаты стационарной точки. Обозначим её через M(1,0). Находим вторые частные производные:
d²z/dx²=6, d²z/dy²=-12, d²z/dxdy=1. Так как вторые частные производные есть постоянные величины, то они имеют такие же значения и в точке М: d²z/dx²(M)=6, d²z/dy²(M)=-12, d²z/dxdy(M)=1. Обозначим теперь d²z/dx²(M)=A, d²z/dxdy(M)=B, d²z/dy²(M)=C. Так как B²-A*C=1-6*(-12)=73>0, то точка М не является точкой экстремума. А так как других стационарных точек нет, то экстремума функция не имеет.
ответ: а) dz=(6*x+y-6)*dx+(x-12*y-1)*dy,
б) функция не имеет экстремумов.