"Центр тяжести тела
Подобно тому, как задача о вычислении центра тяжести плоской фигуры вычислялась с двойного интеграла, задача об отыскании центра тяжести тела решается аналогичным с тройного интеграла."
z0 = integral(z*dx*dy*dz) / integral(dx*dy*dz)
причем по z пределы интегрирования от 0 до 2/3, поскольку поверхность sqrt(x^2+y^2)=2 пересекает конус 3z=sqrt(x^2+y^2) как раз при z=2/3
integral(z*dx*dy*dz) = integral(z*(pi*2^2-pi*9*z^2)*dz) = pi* integral((4z-9*z^3)*dz) = pi*(4z^2/2-9z^4/4) от 0 до 2/3 = pi*(4(2/3)^2/2-9*(2/3)^4/4) = 1.3962634
integral(dx*dy*dz) = integral((pi*2^2-pi*9*z^2)*dz) = pi* integral((4-9*z^2)*dz) = pi*(4z-9z^3/3) от 0 до 2/3 = pi*(4*(2/3)-9*(2/3)^3/3) = 5.5850536
z0 = 1.3962634/5.5850536 = 0.25
1) 3m • (-2,1) = -6,3m; коефіцієнт (-6,3);
2) 3,6 • (-5x) = -18x; коефіцієнт (-18);
3) 10m • (-1,7) • n = -17mn; коефіцієнт (-17);
4) -7a • 3b • (-6c) = 126abc; коефіцієнт 126;
5) 16x • (-8/15b) • 45/64k = -6xbk; коефіцієнт (-6);
6) -0,2t • (-5a) • (-b) = -tab; коефіцієнт (-1).