Логарифмический ноль. Элементарное свойство, которое нужно обязательно помнить. Какое бы ни было основание логарифма, если в аргументе стоит 1, то логарифм всегда равен 0.
Логарифмическая единица. Еще одно простое свойство: если аргумент и основание логарифма одинаковы, то значение логарифма будет равно единице.
Основное логарифмическое тождество. Отличное свойство, превращающее четырехэтажное выражение в простейшую b. Суть этой формулы: основание a, возведенное в степень логарифма с основанием а, будет равно b.
Сумма логарифмов. При умножении логарифмируемых чисел, можно сделать из них сумму 2х логарифмов, у которых будут одинаковые основания. И так невычислимые логарифмы становятся простыми.
Логарифм частного. Здесь ситуация схожая с суммой логарифмов. При делении чисел мы получаем разность двух логарифмов с одинаковым основанием.
Вынесение показателя степени из логарифма. Тут действуют целых 3 правила. Все просто: если степень находится в основании или аргументе логарифма, то ее можно вынести за пределы логарифма, в соответствии с этими формулами
Формулы перехода к новому основанию. Они нужны для выражений с логарифмами, у которых разные основания. Такие формулы в основном используются при решении логарифмических неравенств и уравнений.
Пошаговое объяснение:
x = (-π)/24 - πk/2
Пошаговое объяснение:
cos^2(2x - π/6) - cos^2(2x + π/6) = sqrt(3)/4;
(cos 2x * cos π/6 + sin 2x * sin π/6)^2 - (cos 2x * cos π/6 - sin 2x * sin π/6)^2 = sqrt(3)/4;
cos π/6 = sqrt(3)/2; sin π/6 = 1/2;
Умножаем сразу обе части сразу на 4
(cos 2x * sqrt(3) + sin 2x)^2 - (cos 2x * sqrt(3) - sin 2x)^2 = sqrt(3);
Используя разность квадратов, получаем:
2sqrt(3) * cos 2x * (-2) * sin 2x = sqrt(3);
2sin 2x * cos 2x = (-1/2);
sin 4x = (-1/2);
Вносим знак, получаем
sin (-4x) = sin (π/6 + 2πk);
-4x = π/6 + 2πk;
x = (-π)/24 - πk/2
0,453 ; 3456 ; 3465 ; 8,0001 ; 8079 ; 8,0791 ; 8149