Можно решить, воспользовавшись формулой первых n-чденов геометрической прогрессии.
b₁=2 (бактерии)
q=2 (каждые 8 часов количество бактерий увеличивается вдвое)
S(n)>1000
Найти значение n - деления, за которые количество бактерий сьанет больше 1000.
S(n)=b₁*(1-qⁿ)/(1-q)
2*(1-2ⁿ)/(1-2)>1000
2⁽ⁿ⁺¹⁾>998
Если (n+1)=10, то 2¹⁰=1024
1024>1000>998
n+1=10
n=9 - за 9 делений количество бактерий впервые станет >1000.
В сутки бактерии делятся 3 раза: 24/8=3, значит
9/3=3 - Через трое суток количество бактерий впервые станет
больше 1000
ответ: В. 3
Можно решить простым подсчетом:
1. 2*2=4
2. 4*2=8
3. 8*2=16
4. 16*2=32
5. 32*2=64
6. 64*2=128
7. 28*2=256
8. 256*2=512
9. 512*2=1024
Можно решить, воспользовавшись формулой первых n-чденов геометрической прогрессии.
b₁=2 (бактерии)
q=2 (каждые 8 часов количество бактерий увеличивается вдвое)
S(n)>1000
Найти значение n - деления, за которые количество бактерий сьанет больше 1000.
S(n)=b₁*(1-qⁿ)/(1-q)
2*(1-2ⁿ)/(1-2)>1000
2⁽ⁿ⁺¹⁾>998
Если (n+1)=10, то 2¹⁰=1024
1024>1000>998
n+1=10
n=9 - за 9 делений количество бактерий впервые станет >1000.
В сутки бактерии делятся 3 раза: 24/8=3, значит
9/3=3 - Через трое суток количество бактерий впервые станет
больше 1000
ответ: В. 3
Можно решить простым подсчетом:
1. 2*2=4
2. 4*2=8
3. 8*2=16
4. 16*2=32
5. 32*2=64
6. 64*2=128
7. 28*2=256
8. 256*2=512
9. 512*2=1024
1) Пусть х=0, тогда
0 + 3у=-8
у= - 8/3= - 2 2/3
(0; 2 2/3). Это принцип решения.
2) Найдем целые числа.
3у=-8-2х
у=(-8-2х)/3
х=2; у=-12/3=-4; (2; -4)
х=5; у=-18/3=-6; (5; -6)
х=8; у=-24/3=-8; (8; -8).
Подбираем такие значения х , чтобы числитель делился на 3.
(-1; -2); (-4: 0); (11; -10).