число сумм не превышает шести
сумма всех 10 чисел равна 10*11\2=55
сумма первого столба+сумма второго столбца равна сумме всех 10 чисел, т.е. равна 55
если сумма одного из столбцов равна нечетному числу, то сумма второго четная (55 нечетная, разница двух нечетных четное число)
только одно четное число - число 2 может быть простым числом.
2 не дает ни одна сумма данных чисел.
таким образом мы доказали что среди указанных сумм не может быть больше 6 простых чисел.
Докажем теперь, что среди 7 сумм может быть 6 простых чисел.
Тако разбиение чисел таблицы можно сделать например так
порядок заполнения
первая строка чила 1 и2
вторая строка числа 4 и 3
третья строка числа 5 и 6
четвертая строка числа 10 и 7
пятая строка числа 9 и 8
1+2=3
4+3=7
5+6=11
10+7=17
9+8=17
1+4+5+10+9=29
3,7,11,17,17,29 - простые числа
таким образом мы доказали что наибольшее число этих сумм, что может оказаться простыми числами равна 6.
ответ: 6
Пусть 1<=a1<a2<a3<...<a70<=200 - 70 попарно разных натуральных чисел, каждое из которых не превышает 200, записанных в порядке возрастания
При делении на 4 эти числа могут давать в остатке 0,1,2,3. Чисел дающих при делении на 4 одинаковый остаток по принципу Дирихле будет хотя бы (70=4*17+2) 17+1=18. Эти числа отличаются между собой на число кратное 4, если среди них нет, чисел вида n и n+4, то для каждой разницы таких чисел их разница больше равно 8. Пусть 1<=b1<b2<b3<...<b18<=200 - 18 разных натуральных чисел, дающих при делении на 4 одинаковый остаток и записанных в порядке возрастания
200-1=199>=b18-а1=(b18-b17)+(b17-b68)+...+(b3-b2)+(b2-b1)>=(у нас 17 скобок(слагаемых, каждое из которых больше равно 8))>=8*17=136
отсюда делаем вывод, что таких наличие таких двух чисел (отличающихся на 4) необязательно
пример
1,2,3,4, 9,10,11,12, ..., 133,134,135,136, 141, 142
(9-1=17-9==141-133=8, 2-1=3-2=4-3=1)
(всех чисел 4*136/8+2=70)
При делении на 5 эти числа могут давать в остатке 0,1,2,3, 4. Чисел дающих при делении на 5 одинаковый остаток по принципу Дирихле будет хотя бы (70=5*14) 14. Эти числа отличаются между собой на число кратное 5, если среди них нет, чисел вида n и n+5, то для каждой разницы таких чисел их разница больше равно 10. Пусть 1<=с1<с2<с3<...<с14<=200 - 14 разных натуральных чисел, дающих при делении на 5 одинаковый остаток и записанных в порядке возрастания
200-1=199>=с14-с1=(с14-с13)+(с13-с12)+...+(с3-с2)+(с2-с1)>=(у нас 13 скобок(слагаемых, каждое из которых больше равно 10))>=10*13=130
отсюда делаем вывод, что таких наличие таких двух чисел (отличающихся на 5) необязательно
пример
1,2,3,4,5, 11,12,13,14,15, ..., 131, 132, 133,134,135
(11-1=21-11==131-121=10, 2-1=3-2=4-3=5-4=1)
(всех чисел 140/2=70- выбросили половину первых 140 натуральных чисел)
При делении на 9 эти числа могут давать в остатке 0,1,2,3, 4,5,6,7,8. Чисел дающих при делении на 9 одинаковый остаток по принципу Дирихле будет хотя бы (70=9*7+7) 7+1=8. Эти числа отличаются между собой на число кратное 9, если среди них нет, чисел вида n и n+9, то для каждой разницы таких чисел их разница больше равно 18. Пусть 1<=d1<d2<d3<...<d8<=200 - 8 разных натуральных чисел, дающих при делении на 9 одинаковый остаток и записанных в порядке возрастания
200-1=199>=c8-c1=(c8-c7)+(c7-c8)+...+(c3-c2)+(c2-c1)>=(у нас 7 скобок(слагаемых, каждое из которых больше равно 18))>=18*7=126
отсюда делаем вывод, что таких наличие таких двух чисел (отличающихся на 9) необязательно
пример
1,2,3,4,5,6,7,8,9, 19,20,21,22,23,24,25,26,27, ...,127,128,129,130,131, 132,133
(19-1=37-19==127-109=8, 2-1=3-2=4-3=5-4=6-5=7-6=8-7=9-8=1)
(всех чисел (117+9)/2+7=70 - выбросили половину первых 126 чисел +7 чисел)
ответ НЕОБЯЗАТЕЛЬНО