Сумма углов четырехугольника равна 360 градусов, так как два угла четырехугольника совпадают с двумя углами треугольника, а два оставшихся равны сумме углов соответствующих треугольников. Т.о. сумма углов четырехугольника = сумме углов обоих треугольников = 180 + 180 = 360 градусов
Выполнив такой чертеж, нетрудно убедиться, что треугольников будет всегда восемь (5 маленьких и 3 больших частично совпадающих с маленькими). Если же пятиугольник представлять, состоящим только из независимых треугольников, то их будет 3. Рассуждая так же, как в случае с четырехугольников, получаем, что сумма углов равна 180 * 3 = 540 градусов.
Общая формула для суммы углов выглядит так : (n - 2) * 180, где n - количество сторон многоугольника
НОД (54; 36;99) = 9
НОК (54; 36;99) = 1188
Пошаговое объяснение:
НОД (54 ; 36 ; 99)
Разложим числа на простые множители, выделим общие множители и перемножим их:
54 = 2 ⋅ 3 ⋅ 3 ⋅ 3
36 = 2 ⋅ 2 ⋅ 3 ⋅ 3
99 = 3 ⋅ 3 ⋅ 11
общие множители (54 ; 36 ; 99) : 3, 3
НОД (54 ; 36 ; 99) = 3 ∙ 3 = 9
НОК (54; 36;99)
Разложим числа на простые множители:
99 = 3 ∙ 3 ∙ 11
54 = 2 ∙ 3 ∙ 3 ∙ 3
36 = 2 ∙ 2 ∙ 3 ∙ 3
Чтобы найти НОК, нужно перемножить множители большего числа с недостающими множителями, которые выделены жирным цветом :
НОК (99; 54; 36) = 3 ∙ 3 ∙ 11 ∙ 2 ∙ 3 ∙ 2 = 1188