Далее в тексте будем подразумевать под биквадратным трёхчленом и его коэффициентами выражение где под подразумевается квадрат переменной т.е. а его корнями – квадраты искомых корней, если они различны, или его чётным корнем если корень биквадратного трёхчлена – единственный.
Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле тогда Потребуем, чтобы откуда следует, что
Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при а корень биквадратного трёхчлена станет чётным давая два искомых корня Это значение как раз уже и есть одно из искомых решений для параметра
Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно Отсюда следует, что правый квадрат искомых корней – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки А значит, значение всего трёхчлена взятое от должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.
1. Если Саша не дошёл до конца дистанции 0,2 её длины, значит, длина дистанции (120:0,8)=150 м. Во второй раз всю длину дистанции и ещё 0,1 её длины, то есть 1,1 дистанции. Выходит, он оценил дистанцию в (150*1,1)=165 шагов. ответ - Г. 2. Скорость катера была 29632 м/ч; это равняется (29632:1000) км/ч, то есть 29,632 км/ч, что приблизительно равно 30 км/ч . ответ - Б. 7.Если составить схему, видно, что с левого края стояли 9 женщин, а дальше мужчины и женщины чередовались. Выходит также, что последним стоял мужчина. Таким образом, мужчин было на 1 меньше, чем женщин.((50-9)+1):2=29 мужчин. ответ-В. 8. Всего в олимпиадах участвовало (80-32)=48 человек. Из них в обеих олимпиадах участвовало ((37+33)-48)=22 ученика. ответ - Б. 11.Может. 12. 2016 год - високосный. Если 1 января этого года - пятница, то в нём 52 полные недели и 2 дня, из которых один - воскресенье. Значит, в 2016 г 53 воскресенья. Если убрать понедельники, то останется (366-52)=314 дней, в которых 52 полные недели и 2 дня, один из которых - воскресенье. В таком году тоже 53 воскресенья, хотя по-нашему их 45. Вероятность выпадения будет (53+45):7=14, то есть 14 раз в году. 14.а. Нет, не могут. Б. Первым начал Петя. простите, что не всё :( К сожалению, некоторые задачи решить не смогла.
Пошаговое объяснение:
1. 1) 5776, 346, 870, 378, 180, то есть все четные числа.
2) 25, 870, 1165, 180, 1575, то есть все числа оканчивающиеся на 5 или 0.
3) 870, 180, то есть все числа оканчивающиеся на ноль.
2. 386 < x < 401, при x = 388, 390, 392, 394, 396, 398, 400.
3. x - наибольшее двухзначное число.
(х+73):5 без остатка.
х будет равен 97.