Положим так. Если А1 танцевал с Б1, а А2 танцевал с Б2, то А1 танцевал с Б2, а А2 танцевал с Б1. Есть какое-то множество девочек М1, с которыми танцевал мальчик А1; и множество девочек М2, с которыми танцевал мальчик Б2. Оба множества непусты ввиду первых двух предложений.
Гипотеза указывает, что мальчик А1 танцевал с любой девочкой из М2. Множество М1 можно пополнять до тех пор, пока остаются другие нерассмотренные мальчики помимо А1; и если множество М1 ещё не включает всех девочек, то, ввиду предложения о наличии затанцованного мальчика для каждой девочки, такие мальчики остаются. Значит, А1 танцевал со всеми девочками, противоречие.
Для начала я дам Вам весы и девять монет (каждому ученику) Всем хватило? Хорошо. Теперь повторяйте мои действия. Сначала разделим монеты на три группы. В каждой-по три монете. Одну группу оставляем на столе, вторую кладём на одну сторону весов, третью на другую половину. Все положили? Хорошо. У меня чаши равны. Это значит, что фальшивка в группе, которая у меня на столе. Я вижу, у многих учеников та же ситуация. Теперь мы взвешиваем две монеты из третьей группы. Они тоже одинаковые на вес. Значит, третья фальшивая. Теперь я объясню для тех учеников, у которых при взвешивании двух групп монет весы показали неравенство. На той чаше, где веса меньше, лежит фальшивка. Теперь тоже взвесьте по две монеты.
Положим так. Если А1 танцевал с Б1, а А2 танцевал с Б2, то А1 танцевал с Б2, а А2 танцевал с Б1. Есть какое-то множество девочек М1, с которыми танцевал мальчик А1; и множество девочек М2, с которыми танцевал мальчик Б2. Оба множества непусты ввиду первых двух предложений.
Гипотеза указывает, что мальчик А1 танцевал с любой девочкой из М2. Множество М1 можно пополнять до тех пор, пока остаются другие нерассмотренные мальчики помимо А1; и если множество М1 ещё не включает всех девочек, то, ввиду предложения о наличии затанцованного мальчика для каждой девочки, такие мальчики остаются. Значит, А1 танцевал со всеми девочками, противоречие.