ответ: 4 км/час.
Пошаговое объяснение:
Дано. Теплоход за 6 часа по течению такое же расстояние ,что за 7,5 часов против течения на этой же реке .
Найдите скорость течения, если собственная скорость теплохода 36км/ч.
Решение.
Пусть скорость течения реки равно х км/час. Тогда скорость по течению теплохода будет (36+х) км/час
Скорость против течения будет 36-х км/час
За 6 часов по течению х) км
За 7,5 часов против течения х) км
По условию S1=S2.
6(36+x)=7.5(36-x).
216+6x=270-7.5x;
6x+7.5x = 270-216;
13.5x=54;
x=4 км/час - скорость течения реки.
( х^y-xy^=6 ( x-y=1 ( x-y=6
( xy+(x-y)=7 x=y+1 x=y+6
( xy(x-y)=6 (y+1)y=6 (y+6)y=1
xy=m, x-y=n y^+y-6=0 y^+6y-1=0
( m+n=7 D=1-4*(-6)=25 D=36-4(-1)=40 ( mn=6 y1=-1-5 /2=-3 y1=-6-кор40/2=
m=7-n y2=-1+5/2=2 =-6-2кор10/2=-3-кор10
(7-n)n=6 x1=-3+1=-2 у2=-6+кор40/2=
7n-n^=6 |*(-1) x2=2+1=3 =-6+2кор10/2=-3+кор10
n^-7n+6=0 х1=-3-кор10+6=3-кор10
n1=6, n2=1(теорема Виета) х2=-3+кор10+6=3+кор10
m1=7-6=1, m2=7-1=6
ответ:(-2;-3),(3;2),(3-кор10;-3-кор10),(3+кор10;-3+кор10)