М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ffbhhb
ffbhhb
13.01.2020 12:15 •  Математика

3. Запишите все четырехзначные числа, кратные 10, для записи которых используют цифры 2,4, 0,7 (цифры не могут повторятся)

👇
Ответ:
Mariaa77
Mariaa77
13.01.2020

3.075,3.705,3750,3.530,7.350,7.305,5.730,5.370

4,6(32 оценок)
Ответ:
super12345167
super12345167
13.01.2020

ответ: 2470, 2740, 4270, 4720, 7240, 7420. В разряде единиц обязатеотно нуль.

Пошаговое объяснение:

4,4(91 оценок)
Открыть все ответы
Ответ:
nataaleksandro2
nataaleksandro2
13.01.2020
Пусть ABCD - ромб, причем угол BAD равен 120 градусам. Рассмотрим треугольник BAD: AB=AD=34 как стороны ромба. Высота, проведенная из вершины тупого угла равнобедренного треугольника BAD, будет так же являться и медианой. Следовательно, решение сводится к нахождению половины стороны BD треугольника BAD. Из теоремы косинусов:
BD^2 = AB^2 + AD^2 - 2*AB*AD*cos120;
BD^2 = 2*34^2 (1 + 0,5);
BD^2 = 34^2 * 2* 3/2;
BD^2 = 34^2 * 3;
BD = 34√3.
Тогда длины искомых отрезков равны 34√3/2 = 17√3.
ответ: 17√3; 17√3.

Примечание. Находить длину BD можно было и через теорему о сумме квадратов длин диагоналей ромба. В этом случае нам нужно было бы сначала найти длину AC. Она равна 34, так как в ромбе с острым углом 60 градусов меньшая диагональ делит ромб на два равносторонних треугольника и равна, соответственно, стороне ромба.
4,4(90 оценок)
Ответ:
egorvano
egorvano
13.01.2020
Пусть ABCD - ромб, причем угол BAD равен 120 градусам. Рассмотрим треугольник BAD: AB=AD=34 как стороны ромба. Высота, проведенная из вершины тупого угла равнобедренного треугольника BAD, будет так же являться и медианой. Следовательно, решение сводится к нахождению половины стороны BD треугольника BAD. Из теоремы косинусов:
BD^2 = AB^2 + AD^2 - 2*AB*AD*cos120;
BD^2 = 2*34^2 (1 + 0,5);
BD^2 = 34^2 * 2* 3/2;
BD^2 = 34^2 * 3;
BD = 34√3.
Тогда длины искомых отрезков равны 34√3/2 = 17√3.
ответ: 17√3; 17√3.

Примечание. Находить длину BD можно было и через теорему о сумме квадратов длин диагоналей ромба. В этом случае нам нужно было бы сначала найти длину AC. Она равна 34, так как в ромбе с острым углом 60 градусов меньшая диагональ делит ромб на два равносторонних треугольника и равна, соответственно, стороне ромба.
4,4(11 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ