М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ibama
ibama
08.03.2023 18:09 •  Математика

4 класс математика 1 часть учебника страница 49 номер 4 как решить и записать?

👇
Ответ:
Macsoneo
Macsoneo
08.03.2023

сфоткай учебник если не знаешь то :

нажми на "+" потом на скребку


4 класс математика 1 часть учебника страница 49 номер 4 как решить и записать?​
4 класс математика 1 часть учебника страница 49 номер 4 как решить и записать?​
4,4(61 оценок)
Открыть все ответы
Ответ:
LoveSmile78900987
LoveSmile78900987
08.03.2023
Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках. 

"Опасные" точки сразу видны, это:
1) n=- \frac{2}{7} - знаменатель обращается в 0.
2) n=0 - по обычаю проверяется эта точка.

Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
lim (1+ \frac{1}{x})^x=e (при x→∞)

Выделяем целую часть в дроби:

\frac{7n+3}{7n+2 } = 1 + \frac{1}{7n+2 }

Используем свойство 2-го замечательного предела, но добавляем степени:

lim (1 + \frac{1}{7n+2 })^{3n-4}

lim (((1 + \frac{1}{7n+2 })^{7n+2})^{ \frac{1}{7n+2}})^{3n-4} = e^{\frac{1}{7n+2} * 3n-4} (при n→∞)

То есть мы степень не меняли: домножили и разделили.

Посчитаем, что получилось:

e^{\frac{1}{7n+2} * 3n-4} = e^{ \frac{3n-4}{7n+2}} = e^{ \frac{n*(3-\frac{4}{n}) }{n*(7+\frac{2}{n})} } = e^{ \frac{3}{7} } (при n→∞)

Итак: 
1) n→+∞ предел равен e^{ \frac{3}{7} }
2) n→-∞  предел равен e^{ \frac{3}{7} }

3) n→0 предел равен:
lim ( \frac{7n+3}{7n+2})^{3n-4} = (\frac{3}{2})^{-4} = (\frac{2}{3})^{4} = \frac{16}{81}

4) n- \frac{2}{7}
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).

Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.

Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - \frac{3}{7} \leq x \leq - \frac{2}{7} - мы получаем отрицательное основание).

Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).

Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).

Найдите предел числовой последовательности. укажите, является ли заданная числовая последовательност
4,4(95 оценок)
Ответ:
olykylak2551
olykylak2551
08.03.2023

ответ: 22.1 y=sin(x)-x*cos(x); 22.2 y=4/9*sin(2*x)-1/3*x*cos(2*x)-5/9*sin(x).

Пошаговое объяснение:

22.1.

Функция y(x) имеет изображение y(p), функция y"(x) - изображение p²*y(p)-p*y(0)-y'(0), а функция f(x)=2*sin(x) - изображение 2/(p²+1). Так как по условию y(0)=y'(0)=0, то y"(x)⇒p²*y(p), и тогда уравнение принимает вид: p²*y(p)+y(p)=2/(p²+1). Отсюда y(p)=2/(p²+1)²=1/p*2*p/(p²+1). Так как функция y1(p)=1/p является изображением функции y1(x)=1, а функция y2(p)=2*p/(p²+1)² - изображением функции y2(x)=x*sin(x), то произведение y1(p)*y2(p) является изображением свёртки функций y1(x) * y2(x). Находим свёртку по формуле: y1(x) * y2(x)=F(x)-F(0), где F(t)=∫y1(t-τ)*y2(t)*dt. В нашем случае y1(t-τ)=1, y2(t)=t*sin(t), и тогда F(t)=∫t*sin(t)*dt=sin(t)-t*cos(t). Отсюда F(x)=sin(x)-x*cos(x), F(0)=0 и тогда y1(x) * y2(x)=sin(x)-x*cos(x). Тогда искомое решение y(x)=y1(x) * y2(x)=sin(x)-x*cos(x).

22.2

Функция y(x) имеет изображение y(p), функция y"(x) - изображение p²*y(p)-p*y(0)-y'(0), а функция f(x)=x*cos(2*x) - изображение (p²-4)/(p²+4)². Так как по условию y(0)=y'(0)=0, то y"(x)⇒p²*y(p), и тогда уравнение принимает вид: p²*y(p)+y(p)=(p²-4)/(p²+4)². Отсюда y(p)=(p²-4)/[(p²+4)²*(p²+1)]. Разлагая дробь справа на простейшие, находим y(p)=5/9*1/(p²+4)+8/3*1/(p²+4)²-5/9*1/(p²+1)=5/18*2/(p²+2²)+2/3*1/p*2*p*2/(p²+2²)²-5/9*1/(p²+1)=y1(p)+y2(p)-y3(p). Но функция y1(p)=5/18*2/(p²+2²) является изображением функции y1(x)=5/18*sin(2*x), а функция y3(p)=5/9*1/(p²+1) - изображением функции y3(x)=5/9*sin(x). Что же касается функции y2(p)=2/3*1/p*2*p*2/(p²+2²)², то она является изображением произведения числа 2/3 на свёртку функций y4(x) * y5(x). Так как изображением функции y4(x) является функция y4(p)=1/p, то y4(x)=1. Так как изображением функции y5(x) является функция y5(p)=2*p*2/(p²+2²)², то y5(x)=x*sin(2*x). Находим y4(x) * y5(x)=F(x)-F(0), где F(t)=∫y4(t-τ)*y5(t)*dt. Так как y4(t-τ)=1, а y5(t)=t*sin(2*t), то F(t)=∫t*sin(2*t)*dt=1/4*sin(2*t)-1/2*t*cos(2*t). Отсюда F(x)=1/4*sin(2*x)-1/2*x*cos(2*x) и F(0)=0, поэтому функция y2(p) является изображением функции y2(x)=2/3*[1/4*sin(2*x)-1/2*x*cos(2*x)]=1/6*sin(2*x)-1/3*x*cos(2*x). Отсюда искомое решение y(x)=5/18*sin(2*x)+1/6*sin(2*x)-1/3*x*cos(2*x)-5/9*sin(x)=4/9*sin(2*x)-1/3*x*cos(2*x)-5/9*sin(x).    

4,5(66 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ