4) Искомая площадь S=F(3)-F(0), где F(x)=∫(x²+1)*dx - первообразная функции y(x). Отсюда F(x)=1/3*x³+x+C, и тогда S=1/3*3³+3+C-C=12.
5) Разделив обе части уравнения на y, получаем уравнение с разделёнными переменными x²*dx=y*dy. Интегрируя, получаем: 1/2*y²=1/3*x³+C. Используя условие y(0)=1, приходим к уравнению 1/2=0+C, откуда C=1/2. Отсюда 1/2*y²=1/3*x³+1/2, или 3*y²-2*x³-3=0. Проверка: исходное уравнение можно записать в виде dy/dx=x²/y. Дифференцируя полученное решение по x, получаем: 6*y*y'-6*x²=0, откуда y'=dy/dx=x²/y, что совпадает с исходным уравнением - значит, уравнение решено правильно.
1)если вам известны объем v и высота конуса h, выразите его радиус основания r из формулы v=1/3∙πr²h. получите: r²=3v/πh, откуда r=√(3v/πh). 2)если вам известны площадь боковой поверхности конуса s и длина его образующей l, выразите радиус r из формулы: s=πrl. вы получите r=s/πl. 3)следующие способы нахождения радиуса основания конуса базируются на утверждении, что конус образован при вращении прямоугольного треугольника вокруг одного из катетов к оси. так, если вам известны высота конуса h и длина его образующей l, то для нахождения радиуса r вы можете воспользоваться теоремой пифагора: l²=r²+h². выразите из данной формулы r, получите: r²=l²–h² и r=√(l²–h²). 4)используйте правила соотношений между сторонами и углами в прямоугольном треугольнике. если известны образующая конуса l и угол α между высотой конуса и его образующей, найдите радиус основания r, равный одному из катетов прямоугольного треугольника, по формуле: r=l∙sinα. 5)если известны образующая конуса l и угол β между радиусом основания конуса и его образующей, найдите радиус основания r по формуле: r=l∙cosβ. если известны высота конуса h и угол α между его образующей и радиусом основания, найдите радиус основания r по формуле: r=h∙tgα. 6)пример: образующая конуса l равна 20 см и угол α между образующей и высотой конуса равен 15º. найдите радиус основания конуса. решение: в прямоугольном треугольнике с гипотенузой l и острым углом α противолежащий этому углу катет r вычисляется по формуле r=l∙sinα. подставьте соответствующие значения, получите: r=l∙sinα=20∙sin15º. sin15º находится из формул тригонометрических функций половинного аргумента и равен 0,5√(2–√3). отсюда катет r=20∙0,5√(2–√3)=10√(2–√3)см. соответственно, радиус основания конуса r равен 10√(2–√3)см. 7)частный случай: в прямоугольном треугольнике катет, противолежащий углу в 30º, равен половине гипотенузы. таким образом, если известны длина образующей конуса и угол между его образующей и высотой равен 30º, то найдите радиус по формуле: r=1/2l.
ответ: 4) S=12, 5) 3*y²-2*x³-3=0.
Пошаговое объяснение:
4) Искомая площадь S=F(3)-F(0), где F(x)=∫(x²+1)*dx - первообразная функции y(x). Отсюда F(x)=1/3*x³+x+C, и тогда S=1/3*3³+3+C-C=12.
5) Разделив обе части уравнения на y, получаем уравнение с разделёнными переменными x²*dx=y*dy. Интегрируя, получаем: 1/2*y²=1/3*x³+C. Используя условие y(0)=1, приходим к уравнению 1/2=0+C, откуда C=1/2. Отсюда 1/2*y²=1/3*x³+1/2, или 3*y²-2*x³-3=0. Проверка: исходное уравнение можно записать в виде dy/dx=x²/y. Дифференцируя полученное решение по x, получаем: 6*y*y'-6*x²=0, откуда y'=dy/dx=x²/y, что совпадает с исходным уравнением - значит, уравнение решено правильно.