Пусть первыми 32-мя своими ходами Петя уберёт 32 палочки размера от 1 до 32 (если все палочки от 1 до 32 окажутся убраны до завершения 32-ого хода, то пусть Петя делает случайные ходы). После 32-ух ходов на столе останутся четыре палочки, длина самой короткой из которых не менее 33. Пусть треугольник составить невозможно. Тогда длина самой короткой палочки не менее 33, третьей по длине - не менее 34, второй - не менее 67 (сумма 33 и 34) и самой длинной - не менее 101 (сумма 34 и 67). Но самая длинная палочка не длиннее 100. Противоречие. Значит, треугольник составить возможно. Тогда последним ходом Петя убирает палочку, которая не используется в составленном треугольнике и побеждает.
ответ: Победит Петя.
Пошаговое объяснение:
2. 4/7 : 2. 7/4 =
18/7 : 15/4 = 18/7 * 4/15 =
6/7 * 4/5 = 24/35
ответ: 24/35