Исходная матрица имеет вид:
(1;0;0;0;5;1;0;0;2))
Составляем систему для определения координат собственных векторов:
(1 - λ)x1 + 0x2 + 0x3 = 0
0x1 + (5 - λ)x2 + 1x3 = 0
0x1 + 0x2 + (2 - λ)x3 = 0
Составляем уравнение и решаем его:
EQ A = \b\bc\| (\a \al \co3 \hs3 (1 - λ;0;0;0;5 - λ;1;0;0;2 - λ)) = 0
λ3 + 8λ2 - 17λ + 10 = 0
Один из корней уравнения равен λ1 = 1
Тогда характеристическое уравнение можно записать как (λ -1)(λ2 + 7λ - 10)=0.
- λ2 +7 λ - 10 = 0
D = 72 - 4 • (-1) • (-10) = 9
EQ λ1 = \f(-7+3;2•(-1)) = 2
EQ λ2 = \f(-7-3;2•(-1)) = 5
Рассмотрим пример нахождения собственного вектора для λ1.
Составляем систему для определения координат собственных векторов:
Подставляя λ = 1 в систему, имеем:
0x1 + 0x2 + 0x3 = 0
0x1 + 4x2 + 1x3 = 0
0x1 + 0x2 + 1x3 = 0
Пусть x1 - свободное неизвестное, тогда выразим через него все остальные xi.
1/6х-х+0.3х=1/5х+0,3х=1/5,3х
Если х=6,то 1/5,3*6=1/31,8=0,03144654088.Округлим до сотен=0,03
А8.2)12м 24 см
В3.7– 0,4 (6 + х) – 0,5 (4х - 3)=7-0,4*6+х-0,5*4х+3=7-0,4*6+х-4х*0,5+3=(7-0,4)*6+х-4х*(0,5+3)=6,6*6+х-4х*3,5=39,6+-3х*3,5=39,6+-10,5х.
Если х=10, то 39,6+-10,5*10=39,6+-105=-65,4
В4.1)90*0,4=36(градусов)40% прямого угла
2)180-36=144(градуса)разница
ответ:на 144 градуса.
В5.1)7,5/3=2,5(дней)
2)2,5*4,5=11,25(дней)
ответ:11,25 дней потребуется Лизе.
Прости, но дальше не могу.