Чтобы найти НОД нескольких чисел, нужно разложить эти числа на множители и найти произведение их СОВМЕСТНЫХ множителей, взятых с НАИМЕНЬШИМ показателем степени.
38 = 2 * 19
48 = (2*2*2*2) * 3
102 = 2 * 3 * 17
НОД (38, 48,102) = 2 - наибольший общий делитель
50 = 2 * (5*5)
75 = 3 * (5*5)
250 = 2 * (5*5*5)
НОД (50,75,250) = (5*5) = 25 - наибольший общий делитель
Чтобы найти НОК нескольких чисел, нужно разложить эти числа на множители и найти произведение ВСЕХ множителей, взятых с НАИБОЛЬШИМ показателем степени.
Обозначим товары их начальными буквами: Х, Т, М. 3 человека купили Х+Т+М. Они входят в число покупателей, купивших по две вещи, значит: Т+Х купили 15-3=12 человек. Т+М купили 19-3=16 человек. М+Х купили 20-3=17 человек. Всего этими покупателями куплено: Телевизоров 12+3+16=31 (т) Оставшиеся 37-31=6 телевизоров купили 6 человек. Холодильников куплено теми, кто купил больше одного товара, 35-(12+3+17)=32 (х) Оставшиеся купили 35-32=3 человека. Все проданные микроволновки куплены покупателями, купившими по 2 или 3 товара. Следовательно, покупателей было (12+3+17+16) =48 купивших более 1 вещи и 6+3=9 (чел) купили по одному виду товаров. Всего 48+9=57 человек. Из вошедших в магазин 65-57=8 челове ушли без покупок.
Чтобы найти НОД нескольких чисел, нужно разложить эти числа на множители и найти произведение их СОВМЕСТНЫХ множителей, взятых с НАИМЕНЬШИМ показателем степени.
38 = 2 * 19
48 = (2*2*2*2) * 3
102 = 2 * 3 * 17
НОД (38, 48,102) = 2 - наибольший общий делитель
50 = 2 * (5*5)
75 = 3 * (5*5)
250 = 2 * (5*5*5)
НОД (50,75,250) = (5*5) = 25 - наибольший общий делитель
44 = (2*2) * 11
110 = 2 * 5 * 11
154 = 2 * 7 * 11
НОД (44, 110, 154) = 2 * 11 = 22 - наибольший общий делитель
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Чтобы найти НОК нескольких чисел, нужно разложить эти числа на множители и найти произведение ВСЕХ множителей, взятых с НАИБОЛЬШИМ показателем степени.
60 = (2*2) * 3 * 5
24 = (2*2*2) * 3
36 = (2*2) * (3*3)
НОК (60, 24, 36) = (2*2*2) * (3*3) * 5 = 360 - наименьшее общее кратное
36 = (2*2) * (3*3)
90 = 2 * (3*3) * 5
200 = (2*2*2) * (5*5)
НОК (36, 90, 200) = (2*2*2) * (3*3) * (5*5) = 1800 - наименьшее общее кратное
90 = 2 * (3*3) * 5
60 = (2*2) * 3 * 5
135 = (3*3*3) * 5
НОК (90, 60, 135) = (2*2) * (3*3*3) * 5 = 540 - наименьшее общее кратное
Пошаговое объяснение: