М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Андрей15777
Андрей15777
16.03.2022 13:22 •  Математика

Найдите все значения p, при которых уравнение p*ctg^2x+2sinx+p=3 имеет хотя бы один корень

👇
Ответ:
Taya200401
Taya200401
16.03.2022

4sinx+9=p(1+ctg

2

x)

4sinx+9=p(1+

sin

2

x

cos

2

x

)

4sinx+9=

sin

2

x

p

4sin

3

x+9sin

2

x=p

sinx

=0

−1≤sinx≤1

sinx=t

f(x)=4sin

3

x+9sin

2

x

f

(x)=12cosxsin

2

x+9sin2x

f−−−>max=>13

f−−−>min=>0

4,4(81 оценок)
Ответ:
hamidovapti
hamidovapti
16.03.2022

Дано уравнение p*ctg^2(x)+2sin(x)+p=3.

Выразим его через "р".

p*ctg^2(x)+p = 3 - 2sin(x),

p(ctg^2(x) + 1) = 3 - 2sin(x),

p = (3 - 2sin(x)) / (ctg^2(x) + 1). Заменим ctg^2(x) = cos^2(x) / sin^2(x).

p = (3 - 2sin(x)) / ((cos^2(x) / sin^2(x)) + 1).

Приведём к общему знаменателю:

p = (3 - 2sin(x))*sin^2(x)) / (cos^2(x) + sin^2(x)). В знаменателе 1.

Отсюда p = (3 - 2sin(x))*sin^2(x)).

Проанализируем полученное выражение.

Так как синус может принимать значения от минус 1 до плюс 1 (в том числе и 0), то если один из множителей (а это sin^2(x)) равен нулю, то и р равно 0. Но это предельное значение не входит в область определения функции (получаем 2sin(x) = 3, что невозможно).

При переменной х, равной "пи", синус равен минус 1. Второй множитель положителен и равен 1, а первый принимает значение 3 - (-1) = 5.

Параметр р не принимает отрицательных значений.

ответ: 0 < p ≤ 5.

4,4(54 оценок)
Открыть все ответы
Ответ:
Dj669
Dj669
16.03.2022
Опять не подходит. Итак мы доказали, что среди всех нечетных чисел начинающихся от 5 и далее, не будет такой тройки чисел. Можно было бы сказать что таких чисел больше нет. Но если вы внимательно это прочитали, то наверняка заметили бы, что я не рассмотрел в качестве х, число равно 1. Итак Х1=1, Х2=3 и Х3=5 Все числа простые и отличаются на 2, как и требовалось по условию. И данная тройка единственная за исключением, тройки чисел приведенной в условии задачи. Единственность мы доказали выше. ответ 1, 3, 5
4,7(75 оценок)
Ответ:
mihailgrand
mihailgrand
16.03.2022
Положим что данное выражение равно s(n) , и преобразуем s(n)=2^(2^n)+2^(2^(n-1))+1=(2^(2^(n-1))+1)^2-2^(2^(n-1)) 1) Используя формулу разности квадратов , разложим на множители число s , для определенного n имеем s(n)=(2^(2^(n-1))-2^(2^(n-2))+1)*(2^(2^(n-2))-2^(2^(n-3))+1)*(2^(2^(n-3))-2^(2^(n-4))+1)*...*7 (7-это число s при n=1) 2) докажем что каждые два множителя s (вышеописанные множители) взаимно просты. 3)Для начала возьмём какие-нибудь два числа вида 2^(2^n)+1 и 2^(2^k)+1 , тогда докажем что НОД этих чисел будет равен 1. Без потери общности , положим n>k>0 , то все по той же разности квадратов получим 2^(2^n)+1=(2^(2^(n-1))+1)*(2^(2^(n-2))+1)*(2^(2^(n-3))+1)*...(2^(2^k)+1)*...*5 + 2 То есть это говорит о том что, число 2^(2^(n))+1 при деланий на 2^(2^(k))+1 даёт остаток равный 2 и НОД(2^(2^(k))+1 , 2)=1 так как числа рассматриваемого вида , всегда нечётна . То есть числа взаимно простые. 4)Теперь докажем пункт номер 2. Рассмотрим числа вида X=2^(2^k)-2^(2^(k-1))+1 и Y=2^(2^m)-2^(2^(m-1))+1 Используя формулу (a^2-a+1)(a+1)=a^3+1, заменим (2^(2^(k-1))+1)=u и (2^(2^(m-1))+1)=v получим что X*(2^(2^(k-1))+1)=X*u=2^(3*2^(k-1))+1=A , аналогично Y*(2^(2^(m-1))+1)=Y*v=2^(3*2^(m-1))+1=B Для чисел A и B рассуждая абсолютно аналогично как и в пункте 3 , следует что нод (A,B)=1 то есть они взаимно просты. Стало быть если НОД(X*u,Y*v)=1 и НОД(u,v)=1 значит и НОД(X,Y)=1 тем самым пункт 2 доказан. 5) Если записать упрощенна s(n)=a1*a2*a3*a4***a(n-1)*..*7 из пункта 2 следует (то что любые два числа взаимно просты) , это значит что у s(n) не существует простых делителей вида p^a где p-простое число , "a" целое положительное. В свою очередь это значит что если числа a1,a2,a3 итд являются сами простыми , то у него будет ровно n делителей , если хотя бы какое одно число не простое , то при разложений его , на простые множители , учитывая пункт 2, очевидно что будет больше чем n делителей.
4,6(1 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ