Если после умножения 285714 получается снова шестизначное число, то значит его можно умножить только на 2 или на 3 (умножение на 1 не рассматриваю). Если умножить число на 2 получаем: 571428. Если умножить на 3 то получим: 857142. Т.е. оба варианта возможны, т.к. записаны теми же числами. Второй условие задачи (вторая цифра полученного числа 6) невыполнимо, т.к. вступает в прямое противоречие с первым условием: в самом числе 285714 нет цифры 6, поэтому она никак и не получится. PS: об интересных свойствах такого замечательного числа 285714 (1/7) хорошо написано в книге Перельмана "Занимательная математика (или арифметика - точно не помню)"
Если после умножения 285714 получается снова шестизначное число, то значит его можно умножить только на 2 или на 3 (умножение на 1 не рассматриваю). Если умножить число на 2 получаем: 571428. Если умножить на 3 то получим: 857142. Т.е. оба варианта возможны, т.к. записаны теми же числами. Второй условие задачи (вторая цифра полученного числа 6) невыполнимо, т.к. вступает в прямое противоречие с первым условием: в самом числе 285714 нет цифры 6, поэтому она никак и не получится. PS: об интересных свойствах такого замечательного числа 285714 (1/7) хорошо написано в книге Перельмана "Занимательная математика (или арифметика - точно не помню)"
1/1
2/2
3/3
4/2 и 2
5/5
6/3 и 2
7/7
8/2;2;2
9/3 и 3
Пошаговое объяснение:
Если смотреть на все эти числа ,то наибольший общий делитель будет у всех 1.Если же смотреть на те числа у которых есть наибольший общий делитель то:
НОД(2 и 4)=2
НОД(2 и 6)=2
НОД(2 и 8)=2
НОД(3 и 9)=3
НОД(3 и 6)=3
НОД(6 и 9)=3