1. как изменится разность, если уменьшаемое увеличить на 8?
2. как изменится разность, если уменьшаемое уменьшить на 4?
3. как изменится разность, если вычитаемое увеличить на 7?
4. как изменится разность, если вычитаемое уменьшить на 5?
5.как изменится разность, если уменьшаемое увеличить на 10, а вычитаемое на 6?
6.как изменится разность, если уменьшаемое увеличить на 9, а вычитаемое на 12?
7.как изменится разность, если уменьшаемое уменьшить на 14, а вычитаемое на 9?
8.как изменится разность, если уменьшаемое уменьшить на 7, а вычитаемое на 11?
9.как изменится разность, если уменьшаемое увеличить на 16, а вычитаемое уменьшить на 8?
10. .как изменится разность, если уменьшаемое увеличить на 3, а вычитаемое уменьшить на 6?
11. .как изменится разность, если уменьшаемое уменьшить на 20, а вычитаемое увеличить на 15?
12. .как изменится разность, если уменьшаемое уменьшить на 10, а вычитаемое увеличить на 30?
log(3) x^2 - log(3) x/(x + 6) = 3
одз
x > 0
x/(x + 6) > 0 x < - 6 x > 0
x ∈ (0, +∞)
log(3) x^2 : x/(x + 6) = log(3) 3^3
log(3) x(x + 6) = log(3) 27
x^2 + 6x - 27 = 0
D = 36 + 4*27 = 144
x12 = (-6 +- 12)/2 = -9 3
x = -9 < 0 не корень
х = 3
log(3) x - 6log(2) 3 = 1
одз x > 0
log(3) x = 1 + log(2) 3^6
log(3) x = log(2) 2*3^6
x = 3^(log(2) 2*3^6)
log(x^2) 16 - log(√x) 7 = 2
одз x > 0 x ≠ 1 x ≠ - 1
x ∈ (0, 1) U (1, +∞)
1/2 log(x) 16 - 2 log(x) 7 = 2
log(x) 4 - log(x) 49 = log(x) x^2
log(x) 4/49 = log(x) x^2
x^2 = 4/49
x1 = -2/7 нет < 0
x2 = 2/7
За круглым столом сидят 13 богатырей из k городов, где 1 < k < 13. Каждый богатырь держит в руке золотой или серебряный кубок, причём золотых кубков тоже k. Князь повелел каждому богатырю передать свой кубок соседу справа и повторять это до тех пор, пока какие-нибудь два богатыря из одного города оба не получат золотые кубки. Доказать, что желание князя всегда будет исполнено.
Решение
Пусть утверждение неверно, то есть в любой момент времени ровно один рыцарь из каждого города держит золотой кубок (так как число кланов равно числу кубков). Допустим, что каждая следующая передача кубков происходит через минуту. Тогда за 13 минут – время полного оборота кубков вокруг стола – каждому рыцарю доведётся держать каждый из золотых кубков ровно по одному разу. То есть каждый рыцарь будет держать золотой кубок в течение k минут, а всем рыцарям из одного города – nk минут, где n – число рыцарей из этого города. Таким образом, nk = 13. Но это невозможно, поскольку число 13 простое. Противоречие.