Нужно найти отношение (то есть поделить) общего числа бросков к числу попаданий для каждого баскетболиста и сравнить их. Проделаем это: I баскетболист Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: . II баскетболист Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово. Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.
Число в математике, по определению, равно отношению длинны произвольной окружности к диаметру той же окружности, поскольку все окружности подобны друг другу, т.е.:
;
Отсюда: формула [1] ;
Если же нам нужно найти длину не всей окружности, а только длину дуги составляющую часть от длины всей окружности, в данном конкретном случае от длины всей окружности, то нам просто нужно умножить длину всей окружности на эту самую часть
Таким образом, получаем, что:
формула [2] ;
Теперь воспользуемся формулами [1] и [2] и рассчитаем конкретные значения для данной задачи, учитывая, что:
ответ:это дроби вот 4\4 8\8 2 6\7
Пошаговое объяснение:
это тип сказана так