всего 576 таких чисел.
1) обозначим первую цифру через x, она не может быть нулем, поэтому возможно 9 вариантов выбора
2) другую цифру обозначим через y, ее тоже можно выбирать она может быть нулем, но не может быть равна x)
3) нужно отдельно рассмотреть три случая: xy··, xxy· и xxx·; для каждого из этих случаев нужно подсчитать количество вариантов и эти числа сложить
4)в варианте xy·· две последних цифры могут быть (независимо друг от друга) выбраны равными x или y (по 2 варианта выбора)
поэтому всего получаем 9·9·2·2 = 324 варианта
5)в варианте xxy· последняя цифра может быть равна только x или y (2 варианта)
поэтому всего получаем 9·1·9·2 = 162 варианта
6)в варианте xxx· последняя цифра может быть любой (10 вариантов)
поэтому всего получаем 9·1·1·10 = 90 вариантов
7) общее количество вариантов равно сумме
324 + 162 + 90 = 576
Всю эту работу можно нарисовать с таблицы, но если нужен просто ответ- то 576 чисел
Відповідь:Основанием прямоугольного параллелепипеда является параллелограмм со сторонами 3 м и 5 м и углом между ними 60º. Площадь большего диагонального сечения равна 63 м². Найдите площадь боковой поверхности параллелепипеда.
Решение.
Найдем площадь боковой поверхности. Нам известна площадь большего диагонального сечения. Чтобы найти площадь диагонального сечения нужно умножить высоту прямоугольного параллелепипеда на диагональ основания. Найдём диагональ основания по теореме косинусов
c²=a²+b²-2ab*cos(180-α)
c²=3²+5²-2*3*5*cos(180-60)
c²=9+25-30*cos120
c²=34-30*()
c²=34+15
c²=49
c=7 (м) -диагональ основания
Значит высота прямоугольного параллелепипеда равна
h=63:7=9 м
Значит площадь боковой поверхности равна
S=2*(ah+bh)=2*(3*9+5*9)=2*(27+45)=2*72=144 м²