М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
57safavi
57safavi
09.05.2023 17:56 •  Математика

Сколько существует слов из 10 букв в которых ровно 3 буквв не повторяются и только одна повторяется 4 раза

👇
Ответ:
tushenka88
tushenka88
09.05.2023
Чтобы ответить на данный вопрос, нам потребуется использовать комбинаторику, а именно принципы перестановок и комбинаций.

Дано: 10-буквенные слова, где 3 буквы не повторяются, и только одна буква повторяется 4 раза.

Шаг 1: Выбор 3 различных букв

Сначала нам нужно выбрать 3 различные буквы из доступных алфавитных символов. Используем комбинации. Количество различных сочетаний из n элементов по k элементам обозначается как C(n, k) или "n по k". Для этого мы можем использовать формулу C(n, k) = n! / (k! * (n - k)!), где "!" обозначает факториал.

В нашем случае, n = 26 (общее количество букв в алфавите), а k = 3 (количество букв, которые мы выбираем). Подставив значения в формулу, получим:

C(26, 3) = 26! / (3! * (26 - 3)!)

26! = 26 * 25 * 24 * ... * 3 * 2 * 1 (произведение всех чисел от 1 до 26)

3! = 3 * 2 * 1

(26 - 3)! = 23! = 23 * 22 * ... * 3 * 2 * 1

Теперь мы можем вычислить значение C(26, 3):

C(26, 3) = 26! / (3! * 23!)

C(26, 3) = (26 * 25 * 24 * ... * 3 * 2 * 1) / ((3 * 2 * 1) * (23 * 22 * ... * 3 * 2 * 1))

Шаг 2: Распределение 3 различных букв по 7 позициям

У нас есть 3 различных буквы, которые нужно распределить по 7 позициям (10 букв в слове минус 3 буквы, которые уже выбраны). Для этого мы используем принцип перестановок. Количество различных перестановок из n элементов обозначается как P(n) или "n факториал".

В нашем случае, n = 7 (количество позиций, в которых нужно распределить буквы). Подставив значение n в формулу, получим:

P(7) = 7!

7! = 7 * 6 * 5 * ... * 3 * 2 * 1

Шаг 3: Учет повторяющейся буквы

Слово содержит только одну букву, которая повторяется 4 раза. Мы должны учесть все возможные комбинации расположения повторяющейся буквы внутри слова. В данном случае, у нас есть только одна буква, поэтому количество перестановок повторяющейся буквы будет равно 4!.

4! = 4 * 3 * 2 * 1

Шаг 4: Общее количество слов

Теперь мы можем умножить все вычисленные значения из шагов 1-3, чтобы получить общее количество слов:

Общее количество слов = C(26, 3) * P(7) * 4!

Общее количество слов = (26! / (3! * 23!)) * 7! * 4!

Общее количество слов = (26 * 25 * 24 * ... * 3 * 2 * 1 / (3 * 2 * 1 * (23 * 22 * ... * 3 * 2 * 1))) * (7 * 6 * 5 * ... * 3 * 2 * 1) * (4 * 3 * 2 * 1)

Общее количество слов = 26 * 25 * 24 * ... * 3 * 2 * 1 * 7 * 6 * 5 * ... * 3 * 2 * 1 * 4 * 3 * 2 * 1 / (3 * 2 * 1 * (23 * 22 * ... * 3 * 2 * 1))

Общее количество слов = 26 * 25 * 24 * ... * 3 * 2 * 1 * 7 * 6 * 5 * ... * 3 * 2 * 1 * 4 * 3 * 2 * 1 / (3 * 2 * 1 * 23 * 22 * ... * 3 * 2 * 1)

Здесь выражение 26 * 25 * 24 * ... * 3 * 2 * 1 представляет собой факториал числа 26, который обозначается как 26!.

Вычислить точное значение этого выражения без использования калькулятора может быть сложно, поэтому мы можем приближенно оценить его значение:

26! ≈ 4.0329146 * 10^26

Теперь мы можем вычислить общее количество слов:

Общее количество слов ≈ (4.0329146 * 10^26) * 7 * 6 * 5 * 4 * 3 * 2 ≈ 3.5470402 * 10^29

Ответ: Приближенно существует 3.5470402 * 10^29 слов из 10 букв, в которых ровно 3 буквы не повторяются и только одна повторяется 4 раза.
4,6(24 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ