периметр этого равностороннего четырехугольника равен 8V2,
V - квадратный корень
по координатам А (-3;1) В (-1;3) С (1;1) Д (-1;-1) найдем длины сторон - через длину соответствующего вектора:
1) Координаты вектора АВ равны разности координат точек В и А, т. е имеем:
АВ (-1 -(-3); 3 - 1) = АВ (2; 2), квадрат длины вектора АВ равен: [AB]^2 = 2^2+2^2 = 8, значит, длина [AB]=V8 =2V2, здесь V - корень квадратный.
2) Координаты вектора ВС равны разности координат точек С и В, т. е имеем:
ВС (1 -(-1); 1 - 3) = ВС (2; -2), квадрат длины вектора ВС равен: [BС] ^2 = 2^2+(-2)^2 = 8, значит, длина [BС] =V8 =2V2, здесь V - корень квадратный.
3) Координаты вектора СД равны разности координат точек Д и С, т. е имеем:
СД (-1 -1; -1 - 1) = CД (-2; -2), квадрат длины вектора CД равен: [СД] ^2 = (-2)^2+(-2)^2 = 8, значит, длина [СД] =V8 =2V2, здесь V - корень квадратный.
4) Координаты вектора ДА равны разности координат точек А и Д, т. е имеем:
ДА (-1 -(-3); -1 - 1) = ДА (2; -2), квадрат длины вектора ДА равен: [ДА] ^2 = 2^2+(-2)^2 = 8, значит, длина [AB]=V8 =2V2, здесь V - корень квадратный.
Итак, периметр равностороннего четырехугольника равен 4*2V2 = 8V2
х год. - час, за який би їхав велосипедист з одного міста в інше із швидкістю 12 км/год, за умовою задачі.
х+4 (год) - час, за який їде велосипедист з одного міста в інше із швидкістю 10 км/год, за умовою задачі.
12х (км) - відстань між містами, яку б він проїхав за х год із швидкістю 12 км/год. Також, за умовю задачі, це дорівнює:
10(х+4) (км) - відстань між містами , яку він проїхав за х+4 год із швидкістю 10 км/год.
Тоді:
12х=10(х+4)
12х=10х+40
12х-10х=40
2х=40
х=40/2
х=20 (год.) - час, за який би їхав велосипедист з одного міста в інше із швидкістю 12 км/год.
12*20=240 (км) - відстань між містами.
Перевірка:
20+4=24 (год) - час, за який їде велосипедист з одного міста в інше зі швидкістю 10 км/год.
10*24=240 (км) - відстань між містами.
Відповідь: 240 км.